|
@@ -4,534 +4,44 @@
|
|
|
* @author David Sehnal <david.sehnal@gmail.com>
|
|
|
*/
|
|
|
|
|
|
-import IntTuple from './int-tuple'
|
|
|
-import { hash3, hash4 } from './hash-functions'
|
|
|
-
|
|
|
-/** An immutable ordered set. */
|
|
|
-interface OrderedSet { '@type': 'int-ordered-set' }
|
|
|
+import * as Base from './ordered-set/base'
|
|
|
+import SegmentIterator from './ordered-set/segment-iterator'
|
|
|
|
|
|
namespace OrderedSet {
|
|
|
- export const Empty: OrderedSet = IntTuple.pack(0, -1) as any;
|
|
|
- export function ofSingleton(value: number): OrderedSet { return IntTuple.pack(value, value) as any; }
|
|
|
- export function ofRange(min: number, max: number): OrderedSet { return max < min ? Empty : IntTuple.pack(min, max) as any; }
|
|
|
- /** It is the responsibility of the caller to ensure the array is sorted and contains unique values. */
|
|
|
- export function ofSortedArray(xs: SortedArray): OrderedSet {
|
|
|
- if (!xs.length) return Empty;
|
|
|
- // check if the array is just a range
|
|
|
- if (xs[xs.length - 1] - xs[0] + 1 === xs.length) return ofRange(xs[0], xs[xs.length - 1]);
|
|
|
- return xs as any;
|
|
|
- }
|
|
|
-
|
|
|
- export const has: (set: OrderedSet, x: number) => boolean = hasI as any;
|
|
|
- export const indexOf: (set: OrderedSet, x: number) => number = indexOfI as any;
|
|
|
- export const getAt: (set: OrderedSet, i: number) => number = getAtI as any;
|
|
|
-
|
|
|
- export const min: (set: OrderedSet) => number = minI as any;
|
|
|
- export const max: (set: OrderedSet) => number = maxI as any;
|
|
|
- export const size: (set: OrderedSet) => number = sizeI as any;
|
|
|
- export const hashCode: (set: OrderedSet) => number = hashCodeI as any;
|
|
|
-
|
|
|
- export const areEqual: (a: OrderedSet, b: OrderedSet) => boolean = areEqualI as any;
|
|
|
- export const areIntersecting: (a: OrderedSet, b: OrderedSet) => boolean = areIntersectingI as any;
|
|
|
- export const isSubset: (a: OrderedSet, b: OrderedSet) => boolean = isSubsetI as any;
|
|
|
-
|
|
|
- export const union: (a: OrderedSet, b: OrderedSet) => OrderedSet = unionI as any;
|
|
|
- export const intersect: (a: OrderedSet, b: OrderedSet) => OrderedSet = intersectI as any;
|
|
|
- export const subtract: (a: OrderedSet, b: OrderedSet) => OrderedSet = subtractI as any;
|
|
|
-
|
|
|
- export const getInsertionIndex: (set: OrderedSet, x: number) => number = getInsertionIndexI as any;
|
|
|
- export const getIntervalRange: (set: OrderedSet, min: number, max: number) => { start: number, end: number } = getIntervalRangeI as any;
|
|
|
-}
|
|
|
-
|
|
|
-export default OrderedSet
|
|
|
-
|
|
|
-/** Long and painful implementation starts here */
|
|
|
-
|
|
|
-type Range = IntTuple
|
|
|
-type SortedArray = ArrayLike<number>
|
|
|
-type OrderedSetImpl = Range | SortedArray
|
|
|
-
|
|
|
-function sizeI(set: OrderedSetImpl) { return typeof set === 'number' ? sizeR(set) : (set as SortedArray).length; }
|
|
|
-function hasI(set: OrderedSetImpl, x: number) { return typeof set === 'number' ? hasR(set, x) : hasA(set as SortedArray, x); }
|
|
|
-function indexOfI(set: OrderedSetImpl, x: number) { return typeof set === 'number' ? indexOfR(set, x) : indexOfA(set as SortedArray, x); }
|
|
|
-function getAtI(set: OrderedSetImpl, i: number) { return typeof set === 'number' ? elementAtR(set, i) : (set as SortedArray)[i]; }
|
|
|
-function minI(set: OrderedSetImpl) { return typeof set === 'number' ? minR(set) : (set as SortedArray)[0]; }
|
|
|
-function maxI(set: OrderedSetImpl) { return typeof set === 'number' ? maxR(set) : (set as SortedArray)[(set as SortedArray).length - 1]; }
|
|
|
-
|
|
|
-function hashCodeI(set: OrderedSetImpl) {
|
|
|
- // hash of tuple (size, min, max, mid)
|
|
|
- const s = sizeI(set);
|
|
|
- if (!s) return 0;
|
|
|
- if (s > 2) return hash4(s, getAtI(set, 0), getAtI(set, s - 1), getAtI(set, s >> 1));
|
|
|
- return hash3(s, getAtI(set, 0), getAtI(set, s - 1));
|
|
|
-}
|
|
|
-// TODO: possibly add more hash functions to allow for multilevel hashing.
|
|
|
-
|
|
|
-function areEqualI(a: OrderedSetImpl, b: OrderedSetImpl) {
|
|
|
- if (typeof a === 'number') {
|
|
|
- if (typeof b === 'number') return equalRR(a, b);
|
|
|
- return false;
|
|
|
- } else if (typeof b === 'number') return false;
|
|
|
- return equalAA(a as SortedArray, b as SortedArray);
|
|
|
-}
|
|
|
-
|
|
|
-function areIntersectingI(a: OrderedSetImpl, b: OrderedSetImpl) {
|
|
|
- // if at least one is "range", they must now intersect
|
|
|
- if (typeof a === 'number') {
|
|
|
- if (typeof b === 'number') return equalRR(a, b) || areRangesIntersecting(a, b);
|
|
|
- return areRangesIntersecting(a, b);
|
|
|
- }
|
|
|
- if (!areRangesIntersecting(a, b)) return false;
|
|
|
- else if (typeof b === 'number') return false;
|
|
|
- return areIntersectingAA(a as SortedArray, b as SortedArray);
|
|
|
-}
|
|
|
-
|
|
|
-/** Check if the 2nd argument is a subset of the 1st */
|
|
|
-function isSubsetI(set: OrderedSetImpl, toTest: OrderedSetImpl) {
|
|
|
- if (!isRangeSubset(set, toTest)) return false;
|
|
|
- const testSize = sizeI(toTest);
|
|
|
- if (typeof set === 'number' || !testSize) return true;
|
|
|
- if (typeof toTest === 'number') return indexOfI(set, maxR(toTest)) - indexOfI(set, minR(toTest)) + 1 === testSize;
|
|
|
- return isSubsetAA(set as SortedArray, toTest as SortedArray);
|
|
|
-}
|
|
|
-
|
|
|
-function getInsertionIndexI(set: OrderedSetImpl, x: number) {
|
|
|
- return typeof set === 'number' ? rangeSearchIndex(set, x) : binarySearchIndex(set as SortedArray, x);
|
|
|
-}
|
|
|
-
|
|
|
-function getIntervalRangeI(set: OrderedSetImpl, min: number, max: number) {
|
|
|
- const { start, end } = getStartEnd(set, min, max);
|
|
|
- return { start, end };
|
|
|
-}
|
|
|
-
|
|
|
-function unionI(a: OrderedSetImpl, b: OrderedSetImpl) {
|
|
|
- if (typeof a === 'number') {
|
|
|
- if (typeof b === 'number') return unionRR(a, b);
|
|
|
- return unionAR(b as SortedArray, a);
|
|
|
- } else if (typeof b === 'number') {
|
|
|
- return unionAR(a as SortedArray, b);
|
|
|
- } else return unionAA(a as SortedArray, b as SortedArray);
|
|
|
-}
|
|
|
-
|
|
|
-function intersectI(a: OrderedSetImpl, b: OrderedSetImpl) {
|
|
|
- if (typeof a === 'number') {
|
|
|
- if (typeof b === 'number') return intersectRR(a, b);
|
|
|
- return intersectAR(b as SortedArray, a);
|
|
|
- } else if (typeof b === 'number') {
|
|
|
- return intersectAR(a as SortedArray, b);
|
|
|
- } else {
|
|
|
- if (!areRangesIntersecting(a, b)) return OrderedSet.Empty;
|
|
|
- return intersectAA(a as SortedArray, b as SortedArray);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-function subtractI(a: OrderedSetImpl, b: OrderedSetImpl) {
|
|
|
- if (!areRangesIntersecting(a, b)) return a;
|
|
|
-
|
|
|
- if (typeof a === 'number') {
|
|
|
- if (typeof b === 'number') return substractRR(a, b);
|
|
|
- return subtractRA(a, b as SortedArray);
|
|
|
- } else if (typeof b === 'number') {
|
|
|
- return subtractAR(a as SortedArray, b);
|
|
|
- } else {
|
|
|
- return subtractAA(a as SortedArray, b as SortedArray);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-const minR = IntTuple.fst
|
|
|
-const maxR = IntTuple.snd
|
|
|
-const equalRR = IntTuple.areEqual
|
|
|
-
|
|
|
-const _eR = IntTuple.zero();
|
|
|
-function sizeR(set: Range) { IntTuple.unpack(set, _eR); return _eR.snd - _eR.fst + 1; }
|
|
|
-function hasR(set: Range, x: number) { IntTuple.unpack(set, _eR); return x >= _eR.fst && x <= _eR.snd; }
|
|
|
-function indexOfR(set: Range, x: number) { IntTuple.unpack(set, _eR); return x >= _eR.fst && x <= _eR.snd ? x - _eR.fst : -1; }
|
|
|
-function elementAtR(set: Range, i: number) { return IntTuple.fst(set) + i; }
|
|
|
-
|
|
|
-function hasA(set: SortedArray, x: number) { return x >= set[0] && x <= set[set.length - 1] && binarySearch(set, x) >= 0; }
|
|
|
-function indexOfA(set: SortedArray, x: number) { return x >= set[0] && x <= set[set.length - 1] ? binarySearch(set, x) : -1; }
|
|
|
-
|
|
|
-function binarySearch(xs: SortedArray, value: number) {
|
|
|
- return binarySearchRange(xs, value, 0, xs.length);
|
|
|
-}
|
|
|
-
|
|
|
-function binarySearchRange(xs: SortedArray, value: number, start: number, end: number) {
|
|
|
- let min = start, max = end - 1;
|
|
|
- while (min <= max) {
|
|
|
- if (min + 11 > max) {
|
|
|
- for (let i = min; i <= max; i++) {
|
|
|
- if (value === xs[i]) return i;
|
|
|
- }
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- const mid = (min + max) >> 1;
|
|
|
- const v = xs[mid];
|
|
|
- if (value < v) max = mid - 1;
|
|
|
- else if (value > v) min = mid + 1;
|
|
|
- else return mid;
|
|
|
- }
|
|
|
- return -1;
|
|
|
-}
|
|
|
-
|
|
|
-function binarySearchIndex(xs: SortedArray, value: number) {
|
|
|
- let min = 0, max = xs.length - 1;
|
|
|
- while (min < max) {
|
|
|
- const mid = (min + max) >> 1;
|
|
|
- const v = xs[mid];
|
|
|
- if (value < v) max = mid - 1;
|
|
|
- else if (value > v) min = mid + 1;
|
|
|
- else return mid;
|
|
|
- }
|
|
|
- if (min > max) return max + 1;
|
|
|
- return xs[min] >= value ? min : min + 1;
|
|
|
-}
|
|
|
-
|
|
|
-const _rsiR = IntTuple.zero();
|
|
|
-function rangeSearchIndex(r: Range, value: number) {
|
|
|
- IntTuple.unpack(r, _rsiR);
|
|
|
- if (value < _rsiR.fst) return 0;
|
|
|
- if (value > _rsiR.snd) return _rsiR.snd - _rsiR.fst + 1;
|
|
|
- return value - _rsiR.fst;
|
|
|
-}
|
|
|
-
|
|
|
-const _maxIntRangeRet = { i: 0, j: 0, endA: 0, endB: 0 };
|
|
|
-function getMaxIntersectionRange(xs: SortedArray, ys: SortedArray) {
|
|
|
- const la = xs.length - 1, lb = ys.length - 1;
|
|
|
- _maxIntRangeRet.i = binarySearchIndex(xs, ys[0]);
|
|
|
- _maxIntRangeRet.j = binarySearchIndex(ys, xs[0]);
|
|
|
- _maxIntRangeRet.endA = Math.min(binarySearchIndex(xs, ys[lb]), la);
|
|
|
- _maxIntRangeRet.endB = Math.min(binarySearchIndex(ys, xs[la]), lb);
|
|
|
- return _maxIntRangeRet;
|
|
|
-}
|
|
|
-
|
|
|
-const _startEndRet = { start: 0, end: 0 };
|
|
|
-
|
|
|
-function getStartEnd(set: OrderedSetImpl, min: number, max: number) {
|
|
|
- _startEndRet.start = getInsertionIndexI(set, min);
|
|
|
- let end = getInsertionIndexI(set, max);
|
|
|
- if (end < sizeI(set) && getAtI(set, end) === max) end++;
|
|
|
- _startEndRet.end = end;
|
|
|
- return _startEndRet;
|
|
|
-}
|
|
|
-
|
|
|
-function equalAA(a: SortedArray, b: SortedArray) {
|
|
|
- if (a === b) return true;
|
|
|
- const size = a.length;
|
|
|
- if (size !== b.length || a[0] !== b[0] || a[size - 1] !== b[size - 1]) return false;
|
|
|
- for (let i = 0; i < size; i++) {
|
|
|
- if (a[i] !== b[i]) return false;
|
|
|
- }
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-function areIntersectingAA(xs: SortedArray, ys: SortedArray) {
|
|
|
- if (xs === ys) return true;
|
|
|
-
|
|
|
- let { i, j, endA, endB } = getMaxIntersectionRange(xs, ys);
|
|
|
- while (i <= endA && j <= endB) {
|
|
|
- const x = xs[i], y = ys[j];
|
|
|
- if (x < y) { i++; }
|
|
|
- else if (x > y) { j++; }
|
|
|
- else return true;
|
|
|
- }
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-function isSubsetAA(a: SortedArray, b: SortedArray) {
|
|
|
- if (a === b) return true;
|
|
|
+ export interface IndexRange { start: number, end: number }
|
|
|
+ export function IndexRange(start?: number, end?: number): IndexRange { return { start: start || 0, end: end || 0 }; }
|
|
|
|
|
|
- const lenB = b.length;
|
|
|
- let { i, j, endA, endB } = getMaxIntersectionRange(a, b);
|
|
|
- // must be able to advance by lenB elements
|
|
|
- if (endB - j + 1 < lenB || endA - i + 1 < lenB) return false;
|
|
|
-
|
|
|
- let equal = 0;
|
|
|
- while (i <= endA && j <= endB) {
|
|
|
- const x = a[i], y = b[j];
|
|
|
- if (x < y) { i++; }
|
|
|
- else if (x > y) { j++; }
|
|
|
- else { i++; j++; equal++; }
|
|
|
- }
|
|
|
- return equal === lenB;
|
|
|
-}
|
|
|
-
|
|
|
-function areRangesIntersecting(a: OrderedSetImpl, b: OrderedSetImpl) {
|
|
|
- return sizeI(a) > 0 && sizeI(b) > 0 && maxI(a) >= minI(b) && minI(a) <= maxI(b);
|
|
|
-}
|
|
|
-
|
|
|
-function isRangeSubset(a: OrderedSetImpl, b: OrderedSetImpl) {
|
|
|
- if (!sizeI(a)) return sizeI(b) === 0;
|
|
|
- if (!sizeI(b)) return true;
|
|
|
- return minI(a) <= minI(b) && maxI(a) >= maxI(b);
|
|
|
-}
|
|
|
-
|
|
|
-function unionRR(a: Range, b: Range) {
|
|
|
- if (IntTuple.areEqual(a, b)) return a;
|
|
|
-
|
|
|
- const sizeA = sizeR(a), sizeB = sizeR(b);
|
|
|
- if (!sizeA) return b;
|
|
|
- if (!sizeB) return a;
|
|
|
- const minA = minR(a), minB = minR(b);
|
|
|
- if (areRangesIntersecting(a, b)) return OrderedSet.ofRange(Math.min(minA, minB), Math.max(maxR(a), maxR(b)));
|
|
|
- let lSize, lMin, rSize, rMin;
|
|
|
- if (minR(a) < minR(b)) { lSize = sizeA; lMin = minA; rSize = sizeB; rMin = minB; }
|
|
|
- else { lSize = sizeB; lMin = minB; rSize = sizeA; rMin = minA; }
|
|
|
- const arr = new Int32Array(sizeA + sizeB);
|
|
|
- for (let i = 0; i < lSize; i++) arr[i] = i + lMin;
|
|
|
- for (let i = 0; i < rSize; i++) arr[i + lSize] = i + rMin;
|
|
|
- return OrderedSet.ofSortedArray(arr);
|
|
|
-}
|
|
|
-
|
|
|
-const _uAR = IntTuple.zero();
|
|
|
-function unionAR(a: SortedArray, b: Range) {
|
|
|
- const bSize = sizeI(b);
|
|
|
- if (!bSize) return a;
|
|
|
- // is the array fully contained in the range?
|
|
|
- if (isRangeSubset(b, a)) return b;
|
|
|
-
|
|
|
- IntTuple.unpack(b, _uAR);
|
|
|
- const min = _uAR.fst, max = _uAR.snd;
|
|
|
- const { start, end } = getStartEnd(a, min, max);
|
|
|
-
|
|
|
- const indices = new Int32Array(start + (a.length - end) + bSize);
|
|
|
- let offset = 0;
|
|
|
- for (let i = 0; i < start; i++) indices[offset++] = a[i];
|
|
|
- for (let i = min; i <= max; i++) indices[offset++] = i;
|
|
|
- for (let i = end, _i = a.length; i < _i; i++) indices[offset] = a[i];
|
|
|
-
|
|
|
- return OrderedSet.ofSortedArray(indices);
|
|
|
-}
|
|
|
-
|
|
|
-function unionAA(a: SortedArray, b: SortedArray) {
|
|
|
- if (a === b) return a;
|
|
|
-
|
|
|
- let { i: sI, j: sJ, endA, endB } = getMaxIntersectionRange(a, b);
|
|
|
- let i = sI, j = sJ;
|
|
|
- let commonCount = 0;
|
|
|
- while (i <= endA && j <= endB) {
|
|
|
- const x = a[i], y = b[j];
|
|
|
- if (x < y) { i++; }
|
|
|
- else if (x > y) { j++; }
|
|
|
- else { i++; j++; commonCount++; }
|
|
|
- }
|
|
|
-
|
|
|
- const lenA = a.length, lenB = b.length;
|
|
|
- // A === B || B is subset of A ==> A
|
|
|
- if ((commonCount === lenA && commonCount === lenB) || commonCount === lenB) return a;
|
|
|
- // A is subset of B ===> B
|
|
|
- if (commonCount === lenA) return b;
|
|
|
-
|
|
|
- const resultSize = lenA + lenB - commonCount;
|
|
|
- const l = Math.min(a[0], b[0]), r = Math.max(a[lenA - 1], b[lenB - 1]);
|
|
|
- // is this just a range?
|
|
|
- if (resultSize === r - l + 1) {
|
|
|
- return OrderedSet.ofRange(l, r);
|
|
|
- }
|
|
|
-
|
|
|
- const indices = new Int32Array(lenA + lenB - commonCount);
|
|
|
- let offset = 0;
|
|
|
-
|
|
|
- // insert the "prefixes"
|
|
|
- for (let k = 0; k < sI; k++) indices[offset++] = a[k];
|
|
|
- for (let k = 0; k < sJ; k++) indices[offset++] = b[k];
|
|
|
-
|
|
|
- // insert the common part
|
|
|
- i = sI;
|
|
|
- j = sJ;
|
|
|
- while (i <= endA && j <= endB) {
|
|
|
- const x = a[i], y = b[j];
|
|
|
- if (x < y) { indices[offset++] = x; i++; }
|
|
|
- else if (x > y) { indices[offset++] = y; j++; }
|
|
|
- else { indices[offset++] = x; i++; j++; }
|
|
|
- }
|
|
|
-
|
|
|
- // insert the "tail"
|
|
|
- for (; i < lenA; i++) indices[offset++] = a[i];
|
|
|
- for (; j < lenB; j++) indices[offset++] = b[j];
|
|
|
-
|
|
|
- return OrderedSet.ofSortedArray(indices);
|
|
|
-}
|
|
|
-
|
|
|
-const _iRA = IntTuple.zero(), _iRB = IntTuple.zero();
|
|
|
-function intersectRR(a: Range, b: Range) {
|
|
|
- if (!areRangesIntersecting(a, b)) return OrderedSet.Empty;
|
|
|
- if (IntTuple.areEqual(a, b)) return a;
|
|
|
-
|
|
|
- IntTuple.unpack(a, _iRA);
|
|
|
- IntTuple.unpack(b, _iRB);
|
|
|
- return OrderedSet.ofRange(Math.max(_iRA.fst, _iRB.fst), Math.min(_iRA.snd, _iRB.snd));
|
|
|
-}
|
|
|
-
|
|
|
-const _iAR = IntTuple.zero();
|
|
|
-function intersectAR(a: SortedArray, r: Range) {
|
|
|
- if (!sizeI(r)) return OrderedSet.Empty;
|
|
|
-
|
|
|
- IntTuple.unpack(r, _iAR);
|
|
|
- const { start, end } = getStartEnd(a, _iAR.fst, _iAR.snd);
|
|
|
- const resultSize = end - start;
|
|
|
- if (!resultSize) return OrderedSet.Empty;
|
|
|
-
|
|
|
- const indices = new Int32Array(resultSize);
|
|
|
- let offset = 0;
|
|
|
- for (let i = start; i < end; i++) {
|
|
|
- indices[offset++] = a[i];
|
|
|
- }
|
|
|
- return OrderedSet.ofSortedArray(indices);
|
|
|
-}
|
|
|
-
|
|
|
-function intersectAA(a: SortedArray, b: SortedArray) {
|
|
|
- if (a === b) return a;
|
|
|
-
|
|
|
- let { i: sI, j: sJ, endA, endB } = getMaxIntersectionRange(a, b);
|
|
|
- let i = sI, j = sJ;
|
|
|
- let commonCount = 0;
|
|
|
- while (i <= endA && j <= endB) {
|
|
|
- const x = a[i], y = b[j];
|
|
|
- if (x < y) { i++; }
|
|
|
- else if (x > y) { j++; }
|
|
|
- else { i++; j++; commonCount++; }
|
|
|
- }
|
|
|
-
|
|
|
- const lenA = a.length, lenB = b.length;
|
|
|
- // no common elements
|
|
|
- if (!commonCount) return OrderedSet.Empty;
|
|
|
- // A === B || B is subset of A ==> B
|
|
|
- if ((commonCount === lenA && commonCount === lenB) || commonCount === lenB) return b;
|
|
|
- // A is subset of B ==> A
|
|
|
- if (commonCount === lenA) return a;
|
|
|
-
|
|
|
- const indices = new Int32Array(commonCount);
|
|
|
- let offset = 0;
|
|
|
- i = sI;
|
|
|
- j = sJ;
|
|
|
- while (i <= endA && j <= endB) {
|
|
|
- const x = a[i], y = b[j];
|
|
|
- if (x < y) { i++; }
|
|
|
- else if (x > y) { j++; }
|
|
|
- else { indices[offset++] = x; i++; j++; }
|
|
|
- }
|
|
|
-
|
|
|
- return OrderedSet.ofSortedArray(indices);
|
|
|
-}
|
|
|
-
|
|
|
-const _sRA = IntTuple.zero(), _sRB = IntTuple.zero();
|
|
|
-function substractRR(a: Range, b: Range) {
|
|
|
- if (IntTuple.areEqual(a, b)) return OrderedSet.Empty;
|
|
|
-
|
|
|
- IntTuple.unpack(a, _sRA);
|
|
|
- IntTuple.unpack(b, _sRB);
|
|
|
-
|
|
|
- if (_sRA.snd < _sRA.fst || _sRB.snd < _sRB.fst) return a;
|
|
|
- // is A subset of B? ==> Empty
|
|
|
- if (isRangeSubset(b, a)) return OrderedSet.Empty;
|
|
|
- if (isRangeSubset(a, b)) {
|
|
|
- // this splits the interval into two, gotta represent it as a set.
|
|
|
- const l = _sRB.fst - _sRA.fst, r = _sRA.snd - _sRB.snd;
|
|
|
- if (l <= 0) return OrderedSet.ofRange(_sRB.snd + 1, _sRB.snd + r);
|
|
|
- if (r <= 0) return OrderedSet.ofRange(_sRA.fst, _sRA.fst + l - 1);
|
|
|
- const ret = new Int32Array(l + r);
|
|
|
- let offset = 0;
|
|
|
- for (let i = 0; i < l; i++) ret[offset++] = _sRA.fst + i;
|
|
|
- for (let i = 1; i <= r; i++) ret[offset++] = _sRB.snd + i;
|
|
|
- return OrderedSet.ofSortedArray(ret);
|
|
|
- }
|
|
|
- // non intersecting ranges are handled by top-level substract.
|
|
|
- // at this point, b either contains rA.fst or rA.snd, but not both.
|
|
|
- if (_sRA.fst < _sRB.fst) return OrderedSet.ofRange(_sRA.fst, _sRB.fst - 1);
|
|
|
- return OrderedSet.ofRange(_sRB.snd + 1, _sRA.snd);
|
|
|
-}
|
|
|
-
|
|
|
-const _sAR = IntTuple.zero();
|
|
|
-function subtractAR(a: SortedArray, b: Range) {
|
|
|
- IntTuple.unpack(b, _sAR);
|
|
|
-
|
|
|
- // is empty?
|
|
|
- if (_sAR.snd < _sAR.fst) return a;
|
|
|
-
|
|
|
- const min = _sAR.fst, max = _sAR.snd;
|
|
|
- const { start, end } = getStartEnd(a, min, max);
|
|
|
- const size = a.length - (end - start);
|
|
|
- // A is subset of B
|
|
|
- if (size <= 0) return OrderedSet.Empty;
|
|
|
- // No common elements
|
|
|
- if (size === a.length) return a;
|
|
|
-
|
|
|
- const ret = new Int32Array(size);
|
|
|
- let offset = 0;
|
|
|
- for (let i = 0; i < start; i++) ret[offset++] = a[i];
|
|
|
- for (let i = end, _i = a.length; i < _i; i++) ret[offset++] = a[i];
|
|
|
- return OrderedSet.ofSortedArray(ret);
|
|
|
-}
|
|
|
+ export const Empty: OrderedSet = Base.Empty as any;
|
|
|
+ export const ofSingleton: (value: number) => OrderedSet = Base.ofSingleton as any;
|
|
|
+ export const ofRange: (min: number, max: number) => OrderedSet = Base.ofRange as any;
|
|
|
+ /** It is the responsibility of the caller to ensure the array is sorted and contains unique values. */
|
|
|
+ export const ofSortedArray: (xs: ArrayLike<number>) => OrderedSet = Base.ofSortedArray as any;
|
|
|
|
|
|
-const _sAR1 = IntTuple.zero();
|
|
|
-function subtractRA(a: Range, b: SortedArray) {
|
|
|
- IntTuple.unpack(a, _sAR1);
|
|
|
+ export const has: (set: OrderedSet, x: number) => boolean = Base.has as any;
|
|
|
+ export const indexOf: (set: OrderedSet, x: number) => number = Base.indexOf as any;
|
|
|
+ export const getAt: (set: OrderedSet, i: number) => number = Base.getAt as any;
|
|
|
|
|
|
- // is empty?
|
|
|
- if (_sAR1.snd < _sAR1.fst) return a;
|
|
|
+ export const min: (set: OrderedSet) => number = Base.minValue as any;
|
|
|
+ export const max: (set: OrderedSet) => number = Base.maxValue as any;
|
|
|
+ export const size: (set: OrderedSet) => number = Base.size as any;
|
|
|
+ export const hashCode: (set: OrderedSet) => number = Base.hashCode as any;
|
|
|
|
|
|
- const min = _sAR1.fst, max = _sAR1.snd;
|
|
|
- const rSize = max - min + 1;
|
|
|
- const { start, end } = getStartEnd(b, min, max);
|
|
|
- const commonCount = end - start;
|
|
|
+ export const areEqual: (a: OrderedSet, b: OrderedSet) => boolean = Base.areEqual as any;
|
|
|
+ export const areIntersecting: (a: OrderedSet, b: OrderedSet) => boolean = Base.areIntersecting as any;
|
|
|
+ export const isSubset: (a: OrderedSet, b: OrderedSet) => boolean = Base.isSubset as any;
|
|
|
|
|
|
- // No common elements.
|
|
|
- if (commonCount === 0) return a;
|
|
|
+ export const union: (a: OrderedSet, b: OrderedSet) => OrderedSet = Base.union as any;
|
|
|
+ export const intersect: (a: OrderedSet, b: OrderedSet) => OrderedSet = Base.intersect as any;
|
|
|
+ export const subtract: (a: OrderedSet, b: OrderedSet) => OrderedSet = Base.subtract as any;
|
|
|
|
|
|
- const resultSize = rSize - commonCount;
|
|
|
- // A is subset of B
|
|
|
- if (resultSize <= 0) return OrderedSet.Empty;
|
|
|
+ export const getPredIndex: (set: OrderedSet, x: number) => number = Base.getPredIndex as any;
|
|
|
+ export const getPredIndex1: (set: OrderedSet, x: number, start: number, end: number) => number = Base.getPredIndex1 as any;
|
|
|
+ export const getIntervalRange: (set: OrderedSet, min: number, max: number) => IndexRange = (set, min, max) => Base.getIntervalRange(set as any, min, max, IndexRange());
|
|
|
+ export const getIntervalRange1: (set: OrderedSet, min: number, max: number, target: IndexRange) => IndexRange = Base.getIntervalRange as any;
|
|
|
|
|
|
- const ret = new Int32Array(resultSize);
|
|
|
- const li = b.length - 1;
|
|
|
- const fst = b[Math.min(start, li)], last = b[Math.min(end, li)];
|
|
|
- let offset = 0;
|
|
|
- for (let i = min; i < fst; i++) ret[offset++] = i;
|
|
|
- for (let i = fst; i <= last; i++) {
|
|
|
- if (binarySearchRange(b, i, start, end) < 0) ret[offset++] = i;
|
|
|
- }
|
|
|
- for (let i = last + 1; i <= max; i++) ret[offset++] = i;
|
|
|
- return OrderedSet.ofSortedArray(ret);
|
|
|
+ export const segments = SegmentIterator
|
|
|
}
|
|
|
|
|
|
-function subtractAA(a: SortedArray, b: SortedArray) {
|
|
|
- if (a === b) return OrderedSet.Empty;
|
|
|
-
|
|
|
- const lenA = a.length;
|
|
|
-
|
|
|
- let { i: sI, j: sJ, endA, endB } = getMaxIntersectionRange(a, b);
|
|
|
- let i = sI, j = sJ;
|
|
|
- let commonCount = 0;
|
|
|
- while (i <= endA && j <= endB) {
|
|
|
- const x = a[i], y = b[j];
|
|
|
- if (x < y) { i++; }
|
|
|
- else if (x > y) { j++; }
|
|
|
- else { i++; j++; commonCount++; }
|
|
|
- }
|
|
|
-
|
|
|
- // A isnt intersecting B ===> A
|
|
|
- if (!commonCount) return a;
|
|
|
- // A === B || A is subset of B ===> Empty
|
|
|
- if (commonCount >= lenA) return OrderedSet.Empty;
|
|
|
-
|
|
|
- const indices = new Int32Array(lenA - commonCount);
|
|
|
- let offset = 0;
|
|
|
-
|
|
|
- // insert the "prefix"
|
|
|
- for (let k = 0; k < sI; k++) indices[offset++] = a[k];
|
|
|
-
|
|
|
- i = sI;
|
|
|
- j = sJ;
|
|
|
- while (i <= endA && j <= endB) {
|
|
|
- const x = a[i], y = b[j];
|
|
|
- if (x < y) { indices[offset++] = x; i++; }
|
|
|
- else if (x > y) { j++; }
|
|
|
- else { i++; j++; }
|
|
|
- }
|
|
|
-
|
|
|
- // insert the "tail"
|
|
|
- for (; i < lenA; i++) indices[offset++] = a[i];
|
|
|
+interface OrderedSet { '@type': 'int-ordered-set' }
|
|
|
|
|
|
- return OrderedSet.ofSortedArray(indices);
|
|
|
-}
|
|
|
+export default OrderedSet
|