|
@@ -1,154 +0,0 @@
|
|
|
-/**
|
|
|
- * Copyright (c) 2018-2021 mol* contributors, licensed under MIT, See LICENSE file for more info.
|
|
|
- *
|
|
|
- * @author Mandar Deshpande <mandar@ebi.ac.uk>
|
|
|
- * @author David Sehnal <david.sehnal@gmail.com>
|
|
|
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
|
|
|
- * @author Sebastian Bittrich <sebastian.bittrich@rcsb.org>
|
|
|
- */
|
|
|
-
|
|
|
-import { Column, Table } from 'molstar/lib/mol-data/db';
|
|
|
-import { toTable } from 'molstar/lib/mol-io/reader/cif/schema';
|
|
|
-import { IndexedCustomProperty, Model, ResidueIndex, Unit } from 'molstar/lib/mol-model/structure';
|
|
|
-import { Structure, StructureElement } from 'molstar/lib/mol-model/structure/structure';
|
|
|
-import { ParamDefinition as PD } from 'molstar/lib/mol-util/param-definition';
|
|
|
-import { MmcifFormat } from 'molstar/lib/mol-model-formats/structure/mmcif';
|
|
|
-import { PropertyWrapper } from 'molstar/lib/mol-model-props/common/wrapper';
|
|
|
-import { CustomProperty } from 'molstar/lib/mol-model-props/common/custom-property';
|
|
|
-import { CustomModelProperty } from 'molstar/lib/mol-model-props/common/custom-model-property';
|
|
|
-import { CustomPropertyDescriptor } from 'molstar/lib/mol-model/custom-property';
|
|
|
-import { arraySetAdd } from 'molstar/lib/mol-util/array';
|
|
|
-import { dateToUtcString } from 'molstar/lib/mol-util/date';
|
|
|
-
|
|
|
-export type PLDDTConfidence = PropertyWrapper<{
|
|
|
- score: IndexedCustomProperty.Residue<[number, string]>,
|
|
|
- category: string[]
|
|
|
-}>
|
|
|
-
|
|
|
-export namespace PLDDTConfidence {
|
|
|
- const AlphaFoldNamespace = 'AF-';
|
|
|
- const BakerNamespace = 'MA-BAK-';
|
|
|
-
|
|
|
- export function isApplicable(model?: Model): boolean {
|
|
|
- if (!model || !MmcifFormat.is(model.sourceData)) return false;
|
|
|
- const entryId = model.entryId.toUpperCase();
|
|
|
- if (!entryId.startsWith(AlphaFoldNamespace) && !entryId.startsWith(BakerNamespace)) return false;
|
|
|
- return model.sourceData.data.frame.categoryNames.includes('ma_qa_metric_local');
|
|
|
- }
|
|
|
-
|
|
|
- export interface Info {
|
|
|
- timestamp_utc: string
|
|
|
- }
|
|
|
-
|
|
|
- export const Schema = {
|
|
|
- local_metric_values: {
|
|
|
- label_asym_id: Column.Schema.str,
|
|
|
- label_comp_id: Column.Schema.str,
|
|
|
- label_seq_id: Column.Schema.int,
|
|
|
- metric_id: Column.Schema.int,
|
|
|
- metric_value: Column.Schema.float,
|
|
|
- model_id: Column.Schema.int,
|
|
|
- ordinal_id: Column.Schema.int
|
|
|
- }
|
|
|
- };
|
|
|
- export type Schema = typeof Schema;
|
|
|
-
|
|
|
- function tryGetInfoFromCif(categoryName: string, model: Model): undefined | Info {
|
|
|
- if (!MmcifFormat.is(model.sourceData) || !model.sourceData.data.frame.categoryNames.includes(categoryName)) {
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- const timestampField = model.sourceData.data.frame.categories[categoryName].getField('metric_value');
|
|
|
- if (!timestampField || timestampField.rowCount === 0) return;
|
|
|
-
|
|
|
- return { timestamp_utc: timestampField.str(0) || dateToUtcString(new Date()) };
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- export function fromCif(ctx: CustomProperty.Context, model: Model): PLDDTConfidence | undefined {
|
|
|
- const info = tryGetInfoFromCif('ma_qa_metric_local', model);
|
|
|
- if (!info) return;
|
|
|
- const data = getCifData(model);
|
|
|
- const metricMap = createScoreMapFromCif(model, data.residues);
|
|
|
- return { info, data: metricMap };
|
|
|
- }
|
|
|
-
|
|
|
- export async function obtain(ctx: CustomProperty.Context, model: Model, _props: PLDDTConfidenceProps): Promise<CustomProperty.Data<any>> {
|
|
|
- const cif = fromCif(ctx, model);
|
|
|
- return { value: cif };
|
|
|
- }
|
|
|
-
|
|
|
- export function getConfidenceScore(e: StructureElement.Location): [number, string] {
|
|
|
- if (!Unit.isAtomic(e.unit)) return [-1, 'No Score'];
|
|
|
- const prop = PLDDTConfidenceProvider.get(e.unit.model).value;
|
|
|
- if (!prop || !prop.data) return [-1, 'No Score'];
|
|
|
- const rI = e.unit.residueIndex[e.element];
|
|
|
- return prop.data.score.has(rI) ? prop.data.score.get(rI)! : [-1, 'No Score'];
|
|
|
- }
|
|
|
-
|
|
|
- const _emptyArray: string[] = [];
|
|
|
- export function getCategories(structure?: Structure) {
|
|
|
- if (!structure) return _emptyArray;
|
|
|
- const prop = PLDDTConfidenceProvider.get(structure.models[0]).value;
|
|
|
- if (!prop || !prop.data) return _emptyArray;
|
|
|
- return prop.data.category;
|
|
|
- }
|
|
|
-
|
|
|
- function getCifData(model: Model) {
|
|
|
- if (!MmcifFormat.is(model.sourceData)) throw new Error('Data format must be mmCIF.');
|
|
|
- return {
|
|
|
- residues: toTable(Schema.local_metric_values, model.sourceData.data.frame.categories.ma_qa_metric_local),
|
|
|
- };
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-export const PLDDTConfidenceParams = {};
|
|
|
-export type PLDDTConfidenceParams = typeof PLDDTConfidenceParams
|
|
|
-export type PLDDTConfidenceProps = PD.Values<PLDDTConfidenceParams>
|
|
|
-
|
|
|
-export const PLDDTConfidenceProvider: CustomModelProperty.Provider<PLDDTConfidenceParams, PLDDTConfidence> = CustomModelProperty.createProvider({
|
|
|
- label: 'pLDDT Confidence Score',
|
|
|
- descriptor: CustomPropertyDescriptor({
|
|
|
- name: 'plddt_confidence_score'
|
|
|
- }),
|
|
|
- type: 'static',
|
|
|
- defaultParams: PLDDTConfidenceParams,
|
|
|
- getParams: () => PLDDTConfidenceParams,
|
|
|
- isApplicable: (data: Model) => PLDDTConfidence.isApplicable(data),
|
|
|
- obtain: async (ctx: CustomProperty.Context, data: Model, props: Partial<PLDDTConfidenceProps>) => {
|
|
|
- const p = { ...PD.getDefaultValues(PLDDTConfidenceParams), ...props };
|
|
|
- return await PLDDTConfidence.obtain(ctx, data, p);
|
|
|
- }
|
|
|
-});
|
|
|
-
|
|
|
-function createScoreMapFromCif(modelData: Model, residueData: Table<typeof PLDDTConfidence.Schema.local_metric_values>): PLDDTConfidence['data'] {
|
|
|
- const { label_asym_id, label_seq_id, metric_value, _rowCount } = residueData;
|
|
|
-
|
|
|
- const ret = new Map<ResidueIndex, [number, string]>();
|
|
|
- const categories: string[] = [];
|
|
|
-
|
|
|
- const toCategory = (v: number): 'Very low' | 'Low' | 'Confident' | 'Very high' => {
|
|
|
- if (v > 50 && v <= 70) return 'Low';
|
|
|
- if (v > 70 && v <= 90) return 'Confident';
|
|
|
- if (v > 90) return 'Very high';
|
|
|
- return 'Very low';
|
|
|
- };
|
|
|
-
|
|
|
- const entityMap = new Map<string, string>();
|
|
|
- for (let i = 0; i < _rowCount; i++) {
|
|
|
- const confidenceScore = metric_value.value(i);
|
|
|
- const labelAsymId = label_asym_id.value(i);
|
|
|
- if (!entityMap.has(labelAsymId)) entityMap.set(labelAsymId, (modelData.atomicHierarchy.index.findEntity(labelAsymId) + 1).toString());
|
|
|
- const entityId = entityMap.get(labelAsymId)!;
|
|
|
- const idx = modelData.atomicHierarchy.index.findResidue(entityId, labelAsymId, label_seq_id.value(i));
|
|
|
- const confidenceCategory = toCategory(confidenceScore);
|
|
|
-
|
|
|
- ret.set(idx, [confidenceScore, confidenceCategory]);
|
|
|
- arraySetAdd(categories, confidenceCategory);
|
|
|
- }
|
|
|
-
|
|
|
- return {
|
|
|
- score: IndexedCustomProperty.fromResidueMap(ret),
|
|
|
- category: categories
|
|
|
- };
|
|
|
-}
|