|
@@ -24,29 +24,31 @@
|
|
|
// );
|
|
|
// float at = thresholdMatrix[pixelCoord.x % 4][pixelCoord.y % 4];
|
|
|
|
|
|
- // https://research.nvidia.com/publication/hashed-alpha-testing
|
|
|
- // Find the discretized derivatives of our coordinates
|
|
|
- float maxDeriv = max(length(dFdx(vViewPosition)), length(dFdy(vViewPosition)));
|
|
|
- float pixScale = 1.0 / maxDeriv;
|
|
|
- // Find two nearest log-discretized noise scales
|
|
|
- vec2 pixScales = vec2(exp2(floor(log2(pixScale))), exp2(ceil(log2(pixScale))));
|
|
|
- // Compute alpha thresholds at our two noise scales
|
|
|
- vec2 alpha = vec2(hash3d(floor(pixScales.x * vViewPosition)), hash3d(floor(pixScales.y * vViewPosition)));
|
|
|
- // Factor to interpolate lerp with
|
|
|
- float lerpFactor = fract(log2(pixScale));
|
|
|
- // Interpolate alpha threshold from noise at two scales
|
|
|
- float x = (1.0 - lerpFactor) * alpha.x + lerpFactor * alpha.y;
|
|
|
- // Pass into CDF to compute uniformly distrib threshold
|
|
|
- float a = min(lerpFactor, 1.0 - lerpFactor);
|
|
|
- vec3 cases = vec3(
|
|
|
- x * x / (2.0 * a * (1.0 - a)),
|
|
|
- (x - 0.5 * a) / (1.0 - a),
|
|
|
- 1.0 - ((1.0 - x) * (1.0 - x) / (2.0 * a * (1.0 - a)))
|
|
|
- );
|
|
|
- // Find our final, uniformly distributed alpha threshold
|
|
|
- float at = (x < (1.0 - a)) ? ((x < a) ? cases.x : cases.y) : cases.z;
|
|
|
- // Avoids ατ == 0. Could also do
|
|
|
- at = clamp(at, 1.0e-6, 1.0);
|
|
|
+ // // https://research.nvidia.com/publication/hashed-alpha-testing
|
|
|
+ // // Find the discretized derivatives of our coordinates
|
|
|
+ // float maxDeriv = max(length(dFdx(vViewPosition)), length(dFdy(vViewPosition)));
|
|
|
+ // float pixScale = 1.0 / maxDeriv;
|
|
|
+ // // Find two nearest log-discretized noise scales
|
|
|
+ // vec2 pixScales = vec2(exp2(floor(log2(pixScale))), exp2(ceil(log2(pixScale))));
|
|
|
+ // // Compute alpha thresholds at our two noise scales
|
|
|
+ // vec2 alpha = vec2(hash3d(floor(pixScales.x * vViewPosition)), hash3d(floor(pixScales.y * vViewPosition)));
|
|
|
+ // // Factor to interpolate lerp with
|
|
|
+ // float lerpFactor = fract(log2(pixScale));
|
|
|
+ // // Interpolate alpha threshold from noise at two scales
|
|
|
+ // float x = (1.0 - lerpFactor) * alpha.x + lerpFactor * alpha.y;
|
|
|
+ // // Pass into CDF to compute uniformly distrib threshold
|
|
|
+ // float a = min(lerpFactor, 1.0 - lerpFactor);
|
|
|
+ // vec3 cases = vec3(
|
|
|
+ // x * x / (2.0 * a * (1.0 - a)),
|
|
|
+ // (x - 0.5 * a) / (1.0 - a),
|
|
|
+ // 1.0 - ((1.0 - x) * (1.0 - x) / (2.0 * a * (1.0 - a)))
|
|
|
+ // );
|
|
|
+ // // Find our final, uniformly distributed alpha threshold
|
|
|
+ // float at = (x < (1.0 - a)) ? ((x < a) ? cases.x : cases.y) : cases.z;
|
|
|
+ // // Avoids ατ == 0. Could also do
|
|
|
+ // at = clamp(at, 1.0e-6, 1.0);
|
|
|
+
|
|
|
+ float at = fract(dot(vec3(gl_FragCoord.xy, vGroup + 0.5), vec3(2.0, 7.0, 23.0) / 17.0f));
|
|
|
|
|
|
if (ma < 0.99 && (ma < 0.01 || ma < at)) discard;
|
|
|
#endif
|