|
@@ -0,0 +1,217 @@
|
|
|
+/**
|
|
|
+ * Copyright (c) 2018 mol* contributors, licensed under MIT, See LICENSE file for more info.
|
|
|
+ *
|
|
|
+ * Taken/adapted from DensityServer (https://github.com/dsehnal/DensityServer)
|
|
|
+ *
|
|
|
+ * @author David Sehnal <david.sehnal@gmail.com>
|
|
|
+ */
|
|
|
+
|
|
|
+import * as Encoder from 'mol-io/writer/cif'
|
|
|
+import * as Data from './data-model'
|
|
|
+import * as Coords from '../algebra/coordinate'
|
|
|
+import VERSION from '../version'
|
|
|
+import * as DataFormat from '../../common/data-format'
|
|
|
+import { Column } from 'mol-data/db';
|
|
|
+import { Iterator } from 'mol-data';
|
|
|
+//import { ArrayEncoding, ArrayEncoder } from 'mol-io/common/binary-cif';
|
|
|
+
|
|
|
+export default function encode(query: Data.QueryContext, output: Data.QueryOutputStream) {
|
|
|
+ let w = Encoder.create({ binary: query.params.asBinary, encoderName: `VolumeServer ${VERSION}` });
|
|
|
+ write(w, query);
|
|
|
+ w.encode();
|
|
|
+ w.writeTo(output);
|
|
|
+}
|
|
|
+
|
|
|
+interface ResultContext {
|
|
|
+ query: Data.QueryContext.Data,
|
|
|
+ channelIndex: number
|
|
|
+}
|
|
|
+
|
|
|
+//type Writer = CIF.Writer<ResultContext | Data.QueryContext>
|
|
|
+
|
|
|
+type FieldDesc<T> = Encoder.FieldDefinition<number, T>
|
|
|
+type CategoryInstance = Encoder.CategoryInstance
|
|
|
+
|
|
|
+//import E = CIF.Binary.Encoder
|
|
|
+
|
|
|
+function string<T>(name: string, str: (data: T) => string, isSpecified?: (data: T) => boolean): FieldDesc<T> {
|
|
|
+ if (isSpecified) {
|
|
|
+ return { name, type: Encoder.FieldType.Str, value: (i, d) => str(d), valueKind: (i, d) => isSpecified(d) ? Column.ValueKind.Present : Column.ValueKind.NotPresent };
|
|
|
+ }
|
|
|
+ return { name, type: Encoder.FieldType.Str, value: (i, d) => str(d) };
|
|
|
+}
|
|
|
+
|
|
|
+function int32<T>(name: string, value: (data: T) => number): FieldDesc<T> {
|
|
|
+ return { name, type: Encoder.FieldType.Int, value: (i, d) => value(d) };
|
|
|
+}
|
|
|
+
|
|
|
+function float64<T>(name: string, value: (data: T) => number, precisionMultiplier: number = 1000000): FieldDesc<T> {
|
|
|
+ return { name, type: Encoder.FieldType.Float, value: (i, d) => value(d) };
|
|
|
+}
|
|
|
+
|
|
|
+interface _vd3d_Ctx {
|
|
|
+ header: DataFormat.Header,
|
|
|
+ channelIndex: number,
|
|
|
+ grid: Coords.GridDomain<'Query'>,
|
|
|
+ sampleRate: number,
|
|
|
+ globalValuesInfo: DataFormat.ValuesInfo,
|
|
|
+ sampledValuesInfo: DataFormat.ValuesInfo,
|
|
|
+}
|
|
|
+
|
|
|
+const _volume_data_3d_info_fields: FieldDesc<_vd3d_Ctx>[] = [
|
|
|
+ string<_vd3d_Ctx>('name', ctx => ctx.header.channels[ctx.channelIndex]),
|
|
|
+
|
|
|
+ int32<_vd3d_Ctx>('axis_order[0]', ctx => ctx.header.axisOrder[0]),
|
|
|
+ int32<_vd3d_Ctx>('axis_order[1]', ctx => ctx.header.axisOrder[1]),
|
|
|
+ int32<_vd3d_Ctx>('axis_order[2]', ctx => ctx.header.axisOrder[2]),
|
|
|
+
|
|
|
+ float64<_vd3d_Ctx>('origin[0]', ctx => ctx.grid.origin[0]),
|
|
|
+ float64<_vd3d_Ctx>('origin[1]', ctx => ctx.grid.origin[1]),
|
|
|
+ float64<_vd3d_Ctx>('origin[2]', ctx => ctx.grid.origin[2]),
|
|
|
+
|
|
|
+ float64<_vd3d_Ctx>('dimensions[0]', ctx => ctx.grid.dimensions[0]),
|
|
|
+ float64<_vd3d_Ctx>('dimensions[1]', ctx => ctx.grid.dimensions[1]),
|
|
|
+ float64<_vd3d_Ctx>('dimensions[2]', ctx => ctx.grid.dimensions[2]),
|
|
|
+
|
|
|
+ int32<_vd3d_Ctx>('sample_rate', ctx => ctx.sampleRate),
|
|
|
+ int32<_vd3d_Ctx>('sample_count[0]', ctx => ctx.grid.sampleCount[0]),
|
|
|
+ int32<_vd3d_Ctx>('sample_count[1]', ctx => ctx.grid.sampleCount[1]),
|
|
|
+ int32<_vd3d_Ctx>('sample_count[2]', ctx => ctx.grid.sampleCount[2]),
|
|
|
+
|
|
|
+ int32<_vd3d_Ctx>('spacegroup_number', ctx => ctx.header.spacegroup.number),
|
|
|
+
|
|
|
+ float64<_vd3d_Ctx>('spacegroup_cell_size[0]', ctx => ctx.header.spacegroup.size[0], 1000),
|
|
|
+ float64<_vd3d_Ctx>('spacegroup_cell_size[1]', ctx => ctx.header.spacegroup.size[1], 1000),
|
|
|
+ float64<_vd3d_Ctx>('spacegroup_cell_size[2]', ctx => ctx.header.spacegroup.size[2], 1000),
|
|
|
+
|
|
|
+ float64<_vd3d_Ctx>('spacegroup_cell_angles[0]', ctx => ctx.header.spacegroup.angles[0], 1000),
|
|
|
+ float64<_vd3d_Ctx>('spacegroup_cell_angles[1]', ctx => ctx.header.spacegroup.angles[1], 1000),
|
|
|
+ float64<_vd3d_Ctx>('spacegroup_cell_angles[2]', ctx => ctx.header.spacegroup.angles[2], 1000),
|
|
|
+
|
|
|
+ float64<_vd3d_Ctx>('mean_source', ctx => ctx.globalValuesInfo.mean),
|
|
|
+ float64<_vd3d_Ctx>('mean_sampled', ctx => ctx.sampledValuesInfo.mean),
|
|
|
+ float64<_vd3d_Ctx>('sigma_source', ctx => ctx.globalValuesInfo.sigma),
|
|
|
+ float64<_vd3d_Ctx>('sigma_sampled', ctx => ctx.sampledValuesInfo.sigma),
|
|
|
+ float64<_vd3d_Ctx>('min_source', ctx => ctx.globalValuesInfo.min),
|
|
|
+ float64<_vd3d_Ctx>('min_sampled', ctx => ctx.sampledValuesInfo.min),
|
|
|
+ float64<_vd3d_Ctx>('max_source', ctx => ctx.globalValuesInfo.max),
|
|
|
+ float64<_vd3d_Ctx>('max_sampled', ctx => ctx.sampledValuesInfo.max)
|
|
|
+];
|
|
|
+
|
|
|
+function _volume_data_3d_info(result: ResultContext): CategoryInstance {
|
|
|
+ const ctx: _vd3d_Ctx = {
|
|
|
+ header: result.query.data.header,
|
|
|
+ channelIndex: result.channelIndex,
|
|
|
+ grid: result.query.samplingInfo.gridDomain,
|
|
|
+ sampleRate: result.query.samplingInfo.sampling.rate,
|
|
|
+ globalValuesInfo: result.query.data.header.sampling[0].valuesInfo[result.channelIndex],
|
|
|
+ sampledValuesInfo: result.query.data.header.sampling[result.query.samplingInfo.sampling.index].valuesInfo[result.channelIndex]
|
|
|
+ };
|
|
|
+
|
|
|
+ return {
|
|
|
+ data: ctx,
|
|
|
+ definition: { name: 'volume_data_3d_info', fields: _volume_data_3d_info_fields },
|
|
|
+ keys: () => Iterator.Value(0),
|
|
|
+ rowCount: 1
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+function _volume_data_3d_number(i: number, ctx: DataFormat.ValueArray): number {
|
|
|
+ return ctx[i];
|
|
|
+}
|
|
|
+
|
|
|
+function _volume_data_3d(ctx: ResultContext) {
|
|
|
+ const data = ctx.query.values[ctx.channelIndex];
|
|
|
+
|
|
|
+ // const E = ArrayEncoding;
|
|
|
+ // let encoder: ArrayEncoder;
|
|
|
+ // let typedArray: any;
|
|
|
+ // if (ctx.query.data.header.valueType === DataFormat.ValueType.Float32 || ctx.query.data.header.valueType === DataFormat.ValueType.Int16) {
|
|
|
+ // let min: number, max: number;
|
|
|
+ // min = data[0], max = data[0];
|
|
|
+ // for (let i = 0, n = data.length; i < n; i++) {
|
|
|
+ // let v = data[i];
|
|
|
+ // if (v < min) min = v;
|
|
|
+ // else if (v > max) max = v;
|
|
|
+ // }
|
|
|
+ // typedArray = Float32Array;
|
|
|
+ // // encode into 255 steps and store each value in 1 byte.
|
|
|
+ // encoder = E.by(E.intervalQuantizaiton(min, max, 255, Uint8Array)).and(E.byteArray);
|
|
|
+ // } else {
|
|
|
+ // typedArray = Int8Array;
|
|
|
+ // // just encode the bytes
|
|
|
+ // encoder = E.by(E.byteArray)
|
|
|
+ // }
|
|
|
+
|
|
|
+ let fields: FieldDesc<typeof data>[] = [{
|
|
|
+ name: 'values', type: Encoder.FieldType.Float, value: _volume_data_3d_number
|
|
|
+ }];
|
|
|
+
|
|
|
+ return {
|
|
|
+ data,
|
|
|
+ definition: { name: 'volume_data_3d', fields },
|
|
|
+ keys: () => Iterator.Range(0, data.length - 1),
|
|
|
+ rowCount: data.length
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+function pickQueryBoxDimension(ctx: Data.QueryContext, e: 'a' | 'b', d: number) {
|
|
|
+ const box = ctx.params.box;
|
|
|
+ switch (box.kind) {
|
|
|
+ case 'Cartesian':
|
|
|
+ case 'Fractional':
|
|
|
+ return `${Math.round(1000000 * box[e][d]) / 1000000}`;
|
|
|
+ default: return '';
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+function queryBoxDimension(e: 'a' | 'b', d: number) {
|
|
|
+ return string<Data.QueryContext>(`query_box_${e}[${d}]`, ctx => pickQueryBoxDimension(ctx, e, d), ctx => ctx.params.box.kind !== 'Cell');
|
|
|
+}
|
|
|
+
|
|
|
+const _density_server_result_fields: FieldDesc<Data.QueryContext>[] = [
|
|
|
+ string<Data.QueryContext>('server_version', ctx => VERSION),
|
|
|
+ string<Data.QueryContext>('datetime_utc', ctx => new Date().toISOString().replace(/T/, ' ').replace(/\..+/, '')),
|
|
|
+ string<Data.QueryContext>('guid', ctx => ctx.guid),
|
|
|
+ string<Data.QueryContext>('is_empty', ctx => ctx.kind === 'Empty' || ctx.kind === 'Error' ? 'yes' : 'no'),
|
|
|
+ string<Data.QueryContext>('has_error', ctx => ctx.kind === 'Error' ? 'yes' : 'no'),
|
|
|
+ string<Data.QueryContext>('error', ctx => ctx.kind === 'Error' ? ctx.message : '', (ctx) => ctx.kind === 'Error'),
|
|
|
+ string<Data.QueryContext>('query_source_id', ctx => ctx.params.sourceId),
|
|
|
+ string<Data.QueryContext>('query_type', ctx => 'box'),
|
|
|
+ string<Data.QueryContext>('query_box_type', ctx => ctx.params.box.kind.toLowerCase()),
|
|
|
+ queryBoxDimension('a', 0),
|
|
|
+ queryBoxDimension('a', 1),
|
|
|
+ queryBoxDimension('a', 2),
|
|
|
+ queryBoxDimension('b', 0),
|
|
|
+ queryBoxDimension('b', 1),
|
|
|
+ queryBoxDimension('b', 2)
|
|
|
+]
|
|
|
+
|
|
|
+function _density_server_result(ctx: Data.QueryContext) {
|
|
|
+ return {
|
|
|
+ data: ctx,
|
|
|
+ definition: { name: 'density_server_result', fields: _density_server_result_fields },
|
|
|
+ keys: () => Iterator.Value(0),
|
|
|
+ rowCount: 1
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+function write(encoder: Encoder.EncoderInstance, query: Data.QueryContext) {
|
|
|
+ encoder.startDataBlock('SERVER');
|
|
|
+ encoder.writeCategory(_density_server_result, [query]);
|
|
|
+
|
|
|
+ switch (query.kind) {
|
|
|
+ case 'Data':
|
|
|
+ }
|
|
|
+
|
|
|
+ if (query.kind === 'Data') {
|
|
|
+ const header = query.data.header;
|
|
|
+ for (let i = 0; i < header.channels.length; i++) {
|
|
|
+ encoder.startDataBlock(header.channels[i]);
|
|
|
+ const ctx: ResultContext[] = [{ query, channelIndex: i }];
|
|
|
+
|
|
|
+ encoder.writeCategory(_volume_data_3d_info, ctx);
|
|
|
+ encoder.writeCategory(_volume_data_3d, ctx);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|