|
@@ -0,0 +1,355 @@
|
|
|
+/**
|
|
|
+ * Copyright (c) 2020 mol* contributors, licensed under MIT, See LICENSE file for more info.
|
|
|
+ *
|
|
|
+ * @author Sebastian Bittrich <sebastian.bittrich@rcsb.org>
|
|
|
+ * @author Alexander Rose <alexander.rose@weirdbyte.de>
|
|
|
+ */
|
|
|
+
|
|
|
+import { ANVILContext } from './anvil/common';
|
|
|
+import { Structure, StructureElement, StructureProperties } from '../../mol-model/structure';
|
|
|
+import { Task, RuntimeContext } from '../../mol-task';
|
|
|
+import { CentroidHelper } from '../../mol-math/geometry/centroid-helper';
|
|
|
+import { AccessibleSurfaceAreaProvider } from '../../mol-model-props/computed/accessible-surface-area';
|
|
|
+import { Vec3 } from '../../mol-math/linear-algebra';
|
|
|
+import { getElementMoleculeType } from '../../mol-model/structure/util';
|
|
|
+import { MoleculeType } from '../../mol-model/structure/model/types';
|
|
|
+import { AccessibleSurfaceArea } from '../../mol-model-props/computed/accessible-surface-area/shrake-rupley';
|
|
|
+import { ParamDefinition as PD } from '../../mol-util/param-definition';
|
|
|
+import { MembraneOrientation } from './membrane-orientation';
|
|
|
+
|
|
|
+export const ANVILParams = {
|
|
|
+ numberOfSpherePoints: PD.Numeric(120, { min: 35, max: 700, step: 1 }, { description: 'Number of spheres/directions to test for membrane placement. Original value is 350.' }),
|
|
|
+ stepSize: PD.Numeric(1, { min: 0.25, max: 4, step: 0.25 }, { description: 'Thickness of membrane slices that will be tested' }),
|
|
|
+ minThickness: PD.Numeric(20, { min: 10, max: 30, step: 1}, { description: 'Minimum membrane thickness used during refinement' }),
|
|
|
+ maxThickness: PD.Numeric(40, { min: 30, max: 50, step: 1}, { description: 'Maximum membrane thickness used during refinement' }),
|
|
|
+ asaCutoff: PD.Numeric(40, { min: 10, max: 100, step: 1 }, { description: 'Absolute ASA cutoff above which residues will be considered' })
|
|
|
+};
|
|
|
+export type ANVILParams = typeof ANVILParams
|
|
|
+export type ANVILProps = PD.Values<ANVILParams>
|
|
|
+
|
|
|
+/**
|
|
|
+ * Implements:
|
|
|
+ * Membrane positioning for high- and low-resolution protein structures through a binary classification approach
|
|
|
+ * Guillaume Postic, Yassine Ghouzam, Vincent Guiraud, and Jean-Christophe Gelly
|
|
|
+ * Protein Engineering, Design & Selection, 2015, 1–5
|
|
|
+ * doi: 10.1093/protein/gzv063
|
|
|
+ */
|
|
|
+export function computeANVIL(structure: Structure, props: ANVILProps) {
|
|
|
+ return Task.create('Compute Membrane Orientation', async runtime => {
|
|
|
+ return await calculate(runtime, structure, props);
|
|
|
+ });
|
|
|
+}
|
|
|
+
|
|
|
+const l = StructureElement.Location.create(void 0);
|
|
|
+const centroidHelper = new CentroidHelper();
|
|
|
+function initialize(structure: Structure, props: ANVILProps): ANVILContext {
|
|
|
+ const { label_atom_id, x, y, z } = StructureProperties.atom;
|
|
|
+ const elementCount = structure.polymerResidueCount;
|
|
|
+ centroidHelper.reset();
|
|
|
+ l.structure = structure;
|
|
|
+
|
|
|
+ let offsets = new Int32Array(elementCount);
|
|
|
+ let exposed = new Array<boolean>(elementCount);
|
|
|
+
|
|
|
+ const accessibleSurfaceArea = structure && AccessibleSurfaceAreaProvider.get(structure);
|
|
|
+ const asa = accessibleSurfaceArea.value!;
|
|
|
+
|
|
|
+ const vec = Vec3();
|
|
|
+ let m = 0;
|
|
|
+ for (let i = 0, il = structure.units.length; i < il; ++i) {
|
|
|
+ const unit = structure.units[i];
|
|
|
+ const { elements } = unit;
|
|
|
+ l.unit = unit;
|
|
|
+
|
|
|
+ for (let j = 0, jl = elements.length; j < jl; ++j) {
|
|
|
+ const eI = elements[j];
|
|
|
+ l.element = eI;
|
|
|
+
|
|
|
+ // consider only amino acids
|
|
|
+ if (getElementMoleculeType(unit, eI) !== MoleculeType.Protein) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // only CA is considered for downstream operations
|
|
|
+ if (label_atom_id(l) !== 'CA') {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // while iterating use first pass to compute centroid
|
|
|
+ Vec3.set(vec, x(l), y(l), z(l));
|
|
|
+ centroidHelper.includeStep(vec);
|
|
|
+
|
|
|
+ // keep track of offsets and exposed state to reuse
|
|
|
+ offsets[m] = structure.serialMapping.getSerialIndex(l.unit, l.element);
|
|
|
+ exposed[m] = AccessibleSurfaceArea.getValue(l, asa) > props.asaCutoff;
|
|
|
+
|
|
|
+ m++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // omit potentially empty tail1
|
|
|
+ offsets = offsets.slice(0, m);
|
|
|
+ exposed = exposed.slice(0, m);
|
|
|
+
|
|
|
+ // calculate centroid and extent
|
|
|
+ centroidHelper.finishedIncludeStep();
|
|
|
+ const centroid = centroidHelper.center;
|
|
|
+ for (let k = 0, kl = offsets.length; k < kl; k++) {
|
|
|
+ setLocation(l, structure, offsets[k]);
|
|
|
+ Vec3.set(vec, x(l), y(l), z(l));
|
|
|
+ centroidHelper.radiusStep(vec);
|
|
|
+ }
|
|
|
+ const extent = 1.2 * Math.sqrt(centroidHelper.radiusSq);
|
|
|
+
|
|
|
+ return {
|
|
|
+ ...props,
|
|
|
+ structure: structure,
|
|
|
+
|
|
|
+ offsets: offsets,
|
|
|
+ exposed: exposed,
|
|
|
+ centroid: centroid,
|
|
|
+ extent: extent
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+export async function calculate(runtime: RuntimeContext, structure: Structure, params: ANVILProps): Promise<MembraneOrientation> {
|
|
|
+ const { label_comp_id } = StructureProperties.atom;
|
|
|
+
|
|
|
+ const ctx = initialize(structure, params);
|
|
|
+ const initialHphobHphil = HphobHphil.filtered(ctx, label_comp_id);
|
|
|
+
|
|
|
+ const initialMembrane = findMembrane(ctx, generateSpherePoints(ctx, ctx.numberOfSpherePoints), initialHphobHphil, label_comp_id);
|
|
|
+ const alternativeMembrane = findMembrane(ctx, findProximateAxes(ctx, initialMembrane), initialHphobHphil, label_comp_id);
|
|
|
+
|
|
|
+ const membrane = initialMembrane.qmax! > alternativeMembrane.qmax! ? initialMembrane : alternativeMembrane;
|
|
|
+
|
|
|
+ return {
|
|
|
+ planePoint1: membrane.planePoint1,
|
|
|
+ planePoint2: membrane.planePoint2,
|
|
|
+ normalVector: membrane.normalVector!,
|
|
|
+ radius: ctx.extent,
|
|
|
+ centroid: ctx.centroid
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+interface MembraneCandidate {
|
|
|
+ planePoint1: Vec3,
|
|
|
+ planePoint2: Vec3,
|
|
|
+ stats: HphobHphil,
|
|
|
+ normalVector?: Vec3,
|
|
|
+ spherePoint?: Vec3,
|
|
|
+ qmax?: number
|
|
|
+}
|
|
|
+
|
|
|
+namespace MembraneCandidate {
|
|
|
+ export function initial(c1: Vec3, c2: Vec3, stats: HphobHphil): MembraneCandidate {
|
|
|
+ return {
|
|
|
+ planePoint1: c1,
|
|
|
+ planePoint2: c2,
|
|
|
+ stats: stats
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
+ export function scored(spherePoint: Vec3, c1: Vec3, c2: Vec3, stats: HphobHphil, qmax: number, centroid: Vec3): MembraneCandidate {
|
|
|
+ const diam_vect = Vec3();
|
|
|
+ Vec3.sub(diam_vect, centroid, spherePoint);
|
|
|
+ return {
|
|
|
+ planePoint1: c1,
|
|
|
+ planePoint2: c2,
|
|
|
+ stats: stats,
|
|
|
+ normalVector: diam_vect,
|
|
|
+ spherePoint: spherePoint,
|
|
|
+ qmax: qmax
|
|
|
+ };
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+function findMembrane(ctx: ANVILContext, spherePoints: Vec3[], initialStats: HphobHphil, label_comp_id: StructureElement.Property<string>): MembraneCandidate {
|
|
|
+ const { centroid, stepSize, minThickness, maxThickness } = ctx;
|
|
|
+ // best performing membrane
|
|
|
+ let membrane: MembraneCandidate;
|
|
|
+ // score of the best performing membrane
|
|
|
+ let qmax = 0;
|
|
|
+
|
|
|
+ // construct slices of thickness 1.0 along the axis connecting the centroid and the spherePoint
|
|
|
+ const diam = Vec3();
|
|
|
+ for (let i = 0, il = spherePoints.length; i < il; i++) {
|
|
|
+ const spherePoint = spherePoints[i];
|
|
|
+ Vec3.sub(diam, centroid, spherePoint);
|
|
|
+ Vec3.scale(diam, diam, 2);
|
|
|
+ const diamNorm = Vec3.magnitude(diam);
|
|
|
+ const qvartemp = [];
|
|
|
+
|
|
|
+ for (let i = 0, il = diamNorm - stepSize; i < il; i += stepSize) {
|
|
|
+ const c1 = Vec3();
|
|
|
+ const c2 = Vec3();
|
|
|
+ Vec3.scaleAndAdd(c1, spherePoint, diam, i / diamNorm);
|
|
|
+ Vec3.scaleAndAdd(c2, spherePoint, diam, (i + stepSize) / diamNorm);
|
|
|
+
|
|
|
+ // evaluate how well this membrane slice embeddeds the peculiar residues
|
|
|
+ const stats = HphobHphil.filtered(ctx, label_comp_id, (testPoint: Vec3) => isInMembranePlane(testPoint, diam, c1, c2));
|
|
|
+ qvartemp.push(MembraneCandidate.initial(c1, c2, stats));
|
|
|
+ }
|
|
|
+
|
|
|
+ let jmax = (minThickness / stepSize) - 1;
|
|
|
+
|
|
|
+ for (let width = 0, widthl = maxThickness; width < widthl;) {
|
|
|
+ const imax = qvartemp.length - 1 - jmax;
|
|
|
+
|
|
|
+ for (let i = 0, il = imax; i < il; i++) {
|
|
|
+ const c1 = qvartemp[i].planePoint1;
|
|
|
+ const c2 = qvartemp[i + jmax].planePoint2;
|
|
|
+
|
|
|
+ let hphob = 0;
|
|
|
+ let hphil = 0;
|
|
|
+ let total = 0;
|
|
|
+ for (let j = 0; j < jmax; j++) {
|
|
|
+ const ij = qvartemp[i + j];
|
|
|
+ if (j === 0 || j === jmax - 1) {
|
|
|
+ hphob += 0.5 * ij.stats.hphob;
|
|
|
+ hphil += 0.5 * ij.stats.hphil;
|
|
|
+ } else {
|
|
|
+ hphob += ij.stats.hphob;
|
|
|
+ hphil += ij.stats.hphil;
|
|
|
+ }
|
|
|
+ total += ij.stats.total;
|
|
|
+ }
|
|
|
+
|
|
|
+ const stats = HphobHphil.of(hphob, hphil, total);
|
|
|
+
|
|
|
+ if (hphob !== 0) {
|
|
|
+ const qvaltest = qValue(stats, initialStats);
|
|
|
+ if (qvaltest > qmax) {
|
|
|
+ qmax = qvaltest;
|
|
|
+ membrane = MembraneCandidate.scored(spherePoint, c1, c2, HphobHphil.of(hphob, hphil, total), qmax, centroid);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ jmax++;
|
|
|
+ width = (jmax + 1) * stepSize;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return membrane!;
|
|
|
+}
|
|
|
+
|
|
|
+function qValue(currentStats: HphobHphil, initialStats: HphobHphil): number {
|
|
|
+ if(initialStats.hphob < 1) {
|
|
|
+ initialStats.hphob = 0.1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(initialStats.hphil < 1) {
|
|
|
+ initialStats.hphil += 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ const part_tot = currentStats.hphob + currentStats.hphil;
|
|
|
+ return (currentStats.hphob * (initialStats.hphil - currentStats.hphil) - currentStats.hphil * (initialStats.hphob - currentStats.hphob)) /
|
|
|
+ Math.sqrt(part_tot * initialStats.hphob * initialStats.hphil * (initialStats.hphob + initialStats.hphil - part_tot));
|
|
|
+}
|
|
|
+
|
|
|
+export function isInMembranePlane(testPoint: Vec3, normalVector: Vec3, planePoint1: Vec3, planePoint2: Vec3): boolean {
|
|
|
+ const d1 = -Vec3.dot(normalVector, planePoint1);
|
|
|
+ const d2 = -Vec3.dot(normalVector, planePoint2);
|
|
|
+ const d = -Vec3.dot(normalVector, testPoint);
|
|
|
+ return d > Math.min(d1, d2) && d < Math.max(d1, d2);
|
|
|
+}
|
|
|
+
|
|
|
+// generates a defined number of points on a sphere with radius = extent around the specified centroid
|
|
|
+function generateSpherePoints(ctx: ANVILContext, numberOfSpherePoints: number): Vec3[] {
|
|
|
+ const { centroid, extent } = ctx;
|
|
|
+ const points = [];
|
|
|
+ let oldPhi = 0, h, theta, phi;
|
|
|
+ for(let k = 1, kl = numberOfSpherePoints + 1; k < kl; k++) {
|
|
|
+ h = -1 + 2 * (k - 1) / (numberOfSpherePoints - 1);
|
|
|
+ theta = Math.acos(h);
|
|
|
+ phi = (k === 1 || k === numberOfSpherePoints) ? 0 : (oldPhi + 3.6 / Math.sqrt(numberOfSpherePoints * (1 - h * h))) % (2 * Math.PI);
|
|
|
+
|
|
|
+ const point = Vec3.create(
|
|
|
+ extent * Math.sin(phi) * Math.sin(theta) + centroid[0],
|
|
|
+ extent * Math.cos(theta) + centroid[1],
|
|
|
+ extent * Math.cos(phi) * Math.sin(theta) + centroid[2]
|
|
|
+ );
|
|
|
+ points[k - 1] = point;
|
|
|
+ oldPhi = phi;
|
|
|
+ }
|
|
|
+
|
|
|
+ return points;
|
|
|
+}
|
|
|
+
|
|
|
+// generates sphere points close to that of the initial membrane
|
|
|
+function findProximateAxes(ctx: ANVILContext, membrane: MembraneCandidate): Vec3[] {
|
|
|
+ const { numberOfSpherePoints, extent } = ctx;
|
|
|
+ const points = generateSpherePoints(ctx, 30000);
|
|
|
+ let j = 4;
|
|
|
+ let sphere_pts2: Vec3[] = [];
|
|
|
+ while (sphere_pts2.length < numberOfSpherePoints) {
|
|
|
+ const d = 2 * extent / numberOfSpherePoints + j;
|
|
|
+ const dsq = d * d;
|
|
|
+ sphere_pts2 = [];
|
|
|
+ for (let i = 0, il = points.length; i < il; i++) {
|
|
|
+ if (Vec3.squaredDistance(points[i], membrane.spherePoint!) < dsq) {
|
|
|
+ sphere_pts2.push(points[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ j += 0.2;
|
|
|
+ }
|
|
|
+ return sphere_pts2;
|
|
|
+}
|
|
|
+
|
|
|
+interface HphobHphil {
|
|
|
+ hphob: number,
|
|
|
+ hphil: number,
|
|
|
+ total: number
|
|
|
+}
|
|
|
+
|
|
|
+namespace HphobHphil {
|
|
|
+ export function of(hphob: number, hphil: number, total?: number) {
|
|
|
+ return {
|
|
|
+ hphob: hphob,
|
|
|
+ hphil: hphil,
|
|
|
+ total: !!total ? total : hphob + hphil
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
+ const testPoint = Vec3();
|
|
|
+ export function filtered(ctx: ANVILContext, label_comp_id: StructureElement.Property<string>, filter?: (test: Vec3) => boolean): HphobHphil {
|
|
|
+ const { offsets, exposed, structure } = ctx;
|
|
|
+ const { x, y, z } = StructureProperties.atom;
|
|
|
+ let hphob = 0;
|
|
|
+ let hphil = 0;
|
|
|
+ for (let k = 0, kl = offsets.length; k < kl; k++) {
|
|
|
+ // ignore buried residues
|
|
|
+ if (!exposed[k]) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ setLocation(l, structure, offsets[k]);
|
|
|
+ Vec3.set(testPoint, x(l), y(l), z(l));
|
|
|
+
|
|
|
+ // testPoints have to be in putative membrane layer
|
|
|
+ if (filter && !filter(testPoint)) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (isHydrophobic(label_comp_id(l))) {
|
|
|
+ hphob++;
|
|
|
+ } else {
|
|
|
+ hphil++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return of(hphob, hphil);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// ANVIL-specific (not general) definition of membrane-favoring amino acids
|
|
|
+const HYDROPHOBIC_AMINO_ACIDS = new Set(['ALA', 'CYS', 'GLY', 'HIS', 'ILE', 'LEU', 'MET', 'PHE', 'SER', 'THR', 'VAL']);
|
|
|
+export function isHydrophobic(label_comp_id: string): boolean {
|
|
|
+ return HYDROPHOBIC_AMINO_ACIDS.has(label_comp_id);
|
|
|
+}
|
|
|
+
|
|
|
+function setLocation(l: StructureElement.Location, structure: Structure, serialIndex: number) {
|
|
|
+ l.structure = structure;
|
|
|
+ l.unit = structure.units[structure.serialMapping.unitIndices[serialIndex]];
|
|
|
+ l.element = structure.serialMapping.elementIndices[serialIndex];
|
|
|
+ return l;
|
|
|
+}
|