|
@@ -0,0 +1,690 @@
|
|
|
+/**
|
|
|
+ * Copyright (c) 2017 molio contributors, licensed under MIT, See LICENSE file for more info.
|
|
|
+ *
|
|
|
+ * @author David Sehnal <david.sehnal@gmail.com>
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * This code has been modified from https://github.com/toji/gl-matrix/,
|
|
|
+ * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
+ *
|
|
|
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
+ * of this software and associated documentation files (the "Software"), to deal
|
|
|
+ * in the Software without restriction, including without limitation the rights
|
|
|
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
+ * copies of the Software, and to permit persons to whom the Software is
|
|
|
+ * furnished to do so, subject to the following conditions:
|
|
|
+ */
|
|
|
+
|
|
|
+export type Mat4 = number[]
|
|
|
+export type Vec3 = number[]
|
|
|
+export type Vec4 = number[]
|
|
|
+
|
|
|
+const enum EPSILON { Value = 0.000001 }
|
|
|
+
|
|
|
+export function Mat4() {
|
|
|
+ return Mat4.zero();
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Stores a 4x4 matrix in a column major (j * 4 + i indexing) format.
|
|
|
+ */
|
|
|
+export namespace Mat4 {
|
|
|
+ export function zero(): number[] {
|
|
|
+ // force double backing array by 0.1.
|
|
|
+ const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
|
|
|
+ ret[0] = 0.0;
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function identity(): number[] {
|
|
|
+ let out = zero();
|
|
|
+ out[0] = 1;
|
|
|
+ out[1] = 0;
|
|
|
+ out[2] = 0;
|
|
|
+ out[3] = 0;
|
|
|
+ out[4] = 0;
|
|
|
+ out[5] = 1;
|
|
|
+ out[6] = 0;
|
|
|
+ out[7] = 0;
|
|
|
+ out[8] = 0;
|
|
|
+ out[9] = 0;
|
|
|
+ out[10] = 1;
|
|
|
+ out[11] = 0;
|
|
|
+ out[12] = 0;
|
|
|
+ out[13] = 0;
|
|
|
+ out[14] = 0;
|
|
|
+ out[15] = 1;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function fromIdentity(mat: number[]): number[] {
|
|
|
+ mat[0] = 1;
|
|
|
+ mat[1] = 0;
|
|
|
+ mat[2] = 0;
|
|
|
+ mat[3] = 0;
|
|
|
+ mat[4] = 0;
|
|
|
+ mat[5] = 1;
|
|
|
+ mat[6] = 0;
|
|
|
+ mat[7] = 0;
|
|
|
+ mat[8] = 0;
|
|
|
+ mat[9] = 0;
|
|
|
+ mat[10] = 1;
|
|
|
+ mat[11] = 0;
|
|
|
+ mat[12] = 0;
|
|
|
+ mat[13] = 0;
|
|
|
+ mat[14] = 0;
|
|
|
+ mat[15] = 1;
|
|
|
+ return mat;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function ofRows(rows: number[][]): number[] {
|
|
|
+ let out = zero(), i: number, j: number, r: number[];
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ r = rows[i];
|
|
|
+ for (j = 0; j < 4; j++) {
|
|
|
+ out[4 * j + i] = r[j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function areEqual(a: number[], b: number[], eps: number) {
|
|
|
+ for (let i = 0; i < 16; i++) {
|
|
|
+ if (Math.abs(a[i] - b[i]) > eps) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function setValue(a: number[], i: number, j: number, value: number) {
|
|
|
+ a[4 * j + i] = value;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function copy(out: number[], a: number[]) {
|
|
|
+ out[0] = a[0];
|
|
|
+ out[1] = a[1];
|
|
|
+ out[2] = a[2];
|
|
|
+ out[3] = a[3];
|
|
|
+ out[4] = a[4];
|
|
|
+ out[5] = a[5];
|
|
|
+ out[6] = a[6];
|
|
|
+ out[7] = a[7];
|
|
|
+ out[8] = a[8];
|
|
|
+ out[9] = a[9];
|
|
|
+ out[10] = a[10];
|
|
|
+ out[11] = a[11];
|
|
|
+ out[12] = a[12];
|
|
|
+ out[13] = a[13];
|
|
|
+ out[14] = a[14];
|
|
|
+ out[15] = a[15];
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function clone(a: number[]) {
|
|
|
+ return Mat4.copy(Mat4.zero(), a);
|
|
|
+ }
|
|
|
+
|
|
|
+ export function invert(out: number[], a: number[]) {
|
|
|
+ let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
|
|
+ a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
|
|
+ a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
|
|
+ a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
|
|
|
+
|
|
|
+ b00 = a00 * a11 - a01 * a10,
|
|
|
+ b01 = a00 * a12 - a02 * a10,
|
|
|
+ b02 = a00 * a13 - a03 * a10,
|
|
|
+ b03 = a01 * a12 - a02 * a11,
|
|
|
+ b04 = a01 * a13 - a03 * a11,
|
|
|
+ b05 = a02 * a13 - a03 * a12,
|
|
|
+ b06 = a20 * a31 - a21 * a30,
|
|
|
+ b07 = a20 * a32 - a22 * a30,
|
|
|
+ b08 = a20 * a33 - a23 * a30,
|
|
|
+ b09 = a21 * a32 - a22 * a31,
|
|
|
+ b10 = a21 * a33 - a23 * a31,
|
|
|
+ b11 = a22 * a33 - a23 * a32,
|
|
|
+
|
|
|
+ // Calculate the determinant
|
|
|
+ det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
|
|
+
|
|
|
+ if (!det) {
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ det = 1.0 / det;
|
|
|
+
|
|
|
+ out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
|
|
|
+ out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
|
|
|
+ out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
|
|
|
+ out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
|
|
|
+ out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
|
|
|
+ out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
|
|
|
+ out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
|
|
|
+ out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
|
|
|
+ out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
|
|
|
+ out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
|
|
|
+ out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
|
|
|
+ out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
|
|
|
+ out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
|
|
|
+ out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
|
|
|
+ out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
|
|
|
+ out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
|
|
|
+
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function mul(out: number[], a: number[], b: number[]) {
|
|
|
+ let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
|
|
+ a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
|
|
+ a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
|
|
+ a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
|
|
|
+
|
|
|
+ // Cache only the current line of the second matrix
|
|
|
+ let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
|
|
|
+ out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
|
|
|
+ out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
|
|
|
+ out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
|
|
|
+ out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
|
|
|
+
|
|
|
+ b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
|
|
|
+ out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
|
|
|
+ out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
|
|
|
+ out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
|
|
|
+ out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
|
|
|
+
|
|
|
+ b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
|
|
|
+ out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
|
|
|
+ out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
|
|
|
+ out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
|
|
|
+ out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
|
|
|
+
|
|
|
+ b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
|
|
|
+ out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
|
|
|
+ out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
|
|
|
+ out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
|
|
|
+ out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function mul3(out: number[], a: number[], b: number[], c: number[]) {
|
|
|
+ return mul(out, mul(out, a, b), c);
|
|
|
+ }
|
|
|
+
|
|
|
+ export function translate(out: number[], a: number[], v: number[]) {
|
|
|
+ let x = v[0], y = v[1], z = v[2],
|
|
|
+ a00: number, a01: number, a02: number, a03: number,
|
|
|
+ a10: number, a11: number, a12: number, a13: number,
|
|
|
+ a20: number, a21: number, a22: number, a23: number;
|
|
|
+
|
|
|
+ if (a === out) {
|
|
|
+ out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
|
|
|
+ out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
|
|
|
+ out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
|
|
|
+ out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
|
|
|
+ } else {
|
|
|
+ a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
|
|
|
+ a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
|
|
|
+ a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
|
|
|
+
|
|
|
+ out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
|
|
|
+ out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
|
|
|
+ out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
|
|
|
+
|
|
|
+ out[12] = a00 * x + a10 * y + a20 * z + a[12];
|
|
|
+ out[13] = a01 * x + a11 * y + a21 * z + a[13];
|
|
|
+ out[14] = a02 * x + a12 * y + a22 * z + a[14];
|
|
|
+ out[15] = a03 * x + a13 * y + a23 * z + a[15];
|
|
|
+ }
|
|
|
+
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function fromTranslation(out: number[], v: number[]) {
|
|
|
+ out[0] = 1;
|
|
|
+ out[1] = 0;
|
|
|
+ out[2] = 0;
|
|
|
+ out[3] = 0;
|
|
|
+ out[4] = 0;
|
|
|
+ out[5] = 1;
|
|
|
+ out[6] = 0;
|
|
|
+ out[7] = 0;
|
|
|
+ out[8] = 0;
|
|
|
+ out[9] = 0;
|
|
|
+ out[10] = 1;
|
|
|
+ out[11] = 0;
|
|
|
+ out[12] = v[0];
|
|
|
+ out[13] = v[1];
|
|
|
+ out[14] = v[2];
|
|
|
+ out[15] = 1;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function rotate(out: number[], a: number[], rad: number, axis: number[]) {
|
|
|
+ let x = axis[0], y = axis[1], z = axis[2],
|
|
|
+ len = Math.sqrt(x * x + y * y + z * z),
|
|
|
+ s, c, t,
|
|
|
+ a00, a01, a02, a03,
|
|
|
+ a10, a11, a12, a13,
|
|
|
+ a20, a21, a22, a23,
|
|
|
+ b00, b01, b02,
|
|
|
+ b10, b11, b12,
|
|
|
+ b20, b21, b22;
|
|
|
+
|
|
|
+ if (Math.abs(len) < EPSILON.Value) { return null; }
|
|
|
+
|
|
|
+ len = 1 / len;
|
|
|
+ x *= len;
|
|
|
+ y *= len;
|
|
|
+ z *= len;
|
|
|
+
|
|
|
+ s = Math.sin(rad);
|
|
|
+ c = Math.cos(rad);
|
|
|
+ t = 1 - c;
|
|
|
+
|
|
|
+ a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
|
|
|
+ a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
|
|
|
+ a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
|
|
|
+
|
|
|
+ // Construct the elements of the rotation matrix
|
|
|
+ b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
|
|
|
+ b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
|
|
|
+ b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
|
|
|
+
|
|
|
+ // Perform rotation-specific matrix multiplication
|
|
|
+ out[0] = a00 * b00 + a10 * b01 + a20 * b02;
|
|
|
+ out[1] = a01 * b00 + a11 * b01 + a21 * b02;
|
|
|
+ out[2] = a02 * b00 + a12 * b01 + a22 * b02;
|
|
|
+ out[3] = a03 * b00 + a13 * b01 + a23 * b02;
|
|
|
+ out[4] = a00 * b10 + a10 * b11 + a20 * b12;
|
|
|
+ out[5] = a01 * b10 + a11 * b11 + a21 * b12;
|
|
|
+ out[6] = a02 * b10 + a12 * b11 + a22 * b12;
|
|
|
+ out[7] = a03 * b10 + a13 * b11 + a23 * b12;
|
|
|
+ out[8] = a00 * b20 + a10 * b21 + a20 * b22;
|
|
|
+ out[9] = a01 * b20 + a11 * b21 + a21 * b22;
|
|
|
+ out[10] = a02 * b20 + a12 * b21 + a22 * b22;
|
|
|
+ out[11] = a03 * b20 + a13 * b21 + a23 * b22;
|
|
|
+
|
|
|
+ if (a !== out) { // If the source and destination differ, copy the unchanged last row
|
|
|
+ out[12] = a[12];
|
|
|
+ out[13] = a[13];
|
|
|
+ out[14] = a[14];
|
|
|
+ out[15] = a[15];
|
|
|
+ }
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function fromRotation(out: number[], rad: number, axis: number[]) {
|
|
|
+ let x = axis[0], y = axis[1], z = axis[2],
|
|
|
+ len = Math.sqrt(x * x + y * y + z * z),
|
|
|
+ s, c, t;
|
|
|
+
|
|
|
+ if (Math.abs(len) < EPSILON.Value) { return fromIdentity(out); }
|
|
|
+
|
|
|
+ len = 1 / len;
|
|
|
+ x *= len;
|
|
|
+ y *= len;
|
|
|
+ z *= len;
|
|
|
+
|
|
|
+ s = Math.sin(rad);
|
|
|
+ c = Math.cos(rad);
|
|
|
+ t = 1 - c;
|
|
|
+
|
|
|
+ // Perform rotation-specific matrix multiplication
|
|
|
+ out[0] = x * x * t + c;
|
|
|
+ out[1] = y * x * t + z * s;
|
|
|
+ out[2] = z * x * t - y * s;
|
|
|
+ out[3] = 0;
|
|
|
+ out[4] = x * y * t - z * s;
|
|
|
+ out[5] = y * y * t + c;
|
|
|
+ out[6] = z * y * t + x * s;
|
|
|
+ out[7] = 0;
|
|
|
+ out[8] = x * z * t + y * s;
|
|
|
+ out[9] = y * z * t - x * s;
|
|
|
+ out[10] = z * z * t + c;
|
|
|
+ out[11] = 0;
|
|
|
+ out[12] = 0;
|
|
|
+ out[13] = 0;
|
|
|
+ out[14] = 0;
|
|
|
+ out[15] = 1;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function scale(out: number[], a: number[], v: number[]) {
|
|
|
+ let x = v[0], y = v[1], z = v[2];
|
|
|
+
|
|
|
+ out[0] = a[0] * x;
|
|
|
+ out[1] = a[1] * x;
|
|
|
+ out[2] = a[2] * x;
|
|
|
+ out[3] = a[3] * x;
|
|
|
+ out[4] = a[4] * y;
|
|
|
+ out[5] = a[5] * y;
|
|
|
+ out[6] = a[6] * y;
|
|
|
+ out[7] = a[7] * y;
|
|
|
+ out[8] = a[8] * z;
|
|
|
+ out[9] = a[9] * z;
|
|
|
+ out[10] = a[10] * z;
|
|
|
+ out[11] = a[11] * z;
|
|
|
+ out[12] = a[12];
|
|
|
+ out[13] = a[13];
|
|
|
+ out[14] = a[14];
|
|
|
+ out[15] = a[15];
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function fromScaling(out: number[], v: number[]) {
|
|
|
+ out[0] = v[0];
|
|
|
+ out[1] = 0;
|
|
|
+ out[2] = 0;
|
|
|
+ out[3] = 0;
|
|
|
+ out[4] = 0;
|
|
|
+ out[5] = v[1];
|
|
|
+ out[6] = 0;
|
|
|
+ out[7] = 0;
|
|
|
+ out[8] = 0;
|
|
|
+ out[9] = 0;
|
|
|
+ out[10] = v[2];
|
|
|
+ out[11] = 0;
|
|
|
+ out[12] = 0;
|
|
|
+ out[13] = 0;
|
|
|
+ out[14] = 0;
|
|
|
+ out[15] = 1;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function makeTable(m: number[]) {
|
|
|
+ let ret = '';
|
|
|
+ for (let i = 0; i < 4; i++) {
|
|
|
+ for (let j = 0; j < 4; j++) {
|
|
|
+ ret += m[4 * j + i].toString();
|
|
|
+ if (j < 3) ret += ' ';
|
|
|
+ }
|
|
|
+ if (i < 3) ret += '\n';
|
|
|
+ }
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function determinant(a: number[]) {
|
|
|
+ let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
|
|
+ a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
|
|
+ a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
|
|
+ a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
|
|
|
+
|
|
|
+ b00 = a00 * a11 - a01 * a10,
|
|
|
+ b01 = a00 * a12 - a02 * a10,
|
|
|
+ b02 = a00 * a13 - a03 * a10,
|
|
|
+ b03 = a01 * a12 - a02 * a11,
|
|
|
+ b04 = a01 * a13 - a03 * a11,
|
|
|
+ b05 = a02 * a13 - a03 * a12,
|
|
|
+ b06 = a20 * a31 - a21 * a30,
|
|
|
+ b07 = a20 * a32 - a22 * a30,
|
|
|
+ b08 = a20 * a33 - a23 * a30,
|
|
|
+ b09 = a21 * a32 - a22 * a31,
|
|
|
+ b10 = a21 * a33 - a23 * a31,
|
|
|
+ b11 = a22 * a33 - a23 * a32;
|
|
|
+
|
|
|
+ // Calculate the determinant
|
|
|
+ return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+export function Vec3(x?: number, y?: number, z?: number) {
|
|
|
+ return Vec3.fromValues(x || 0, y || 0, z || 0);
|
|
|
+}
|
|
|
+
|
|
|
+export namespace Vec3 {
|
|
|
+ export function zero() {
|
|
|
+ let out = [0.1, 0.0, 0.0];
|
|
|
+ out[0] = 0;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function clone(a: number[]) {
|
|
|
+ let out = zero();
|
|
|
+ out[0] = a[0];
|
|
|
+ out[1] = a[1];
|
|
|
+ out[2] = a[2];
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function fromObj(v: { x: number, y: number, z: number }) {
|
|
|
+ return fromValues(v.x, v.y, v.z);
|
|
|
+ }
|
|
|
+
|
|
|
+ export function toObj(v: number[]) {
|
|
|
+ return { x: v[0], y: v[1], z: v[2] };
|
|
|
+ }
|
|
|
+
|
|
|
+ export function fromValues(x: number, y: number, z: number) {
|
|
|
+ let out = zero();
|
|
|
+ out[0] = x;
|
|
|
+ out[1] = y;
|
|
|
+ out[2] = z;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function set(out: number[], x: number, y: number, z: number) {
|
|
|
+ out[0] = x;
|
|
|
+ out[1] = y;
|
|
|
+ out[2] = z;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function copy(out: number[], a: number[]) {
|
|
|
+ out[0] = a[0];
|
|
|
+ out[1] = a[1];
|
|
|
+ out[2] = a[2];
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function add(out: number[], a: number[], b: number[]) {
|
|
|
+ out[0] = a[0] + b[0];
|
|
|
+ out[1] = a[1] + b[1];
|
|
|
+ out[2] = a[2] + b[2];
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function sub(out: number[], a: number[], b: number[]) {
|
|
|
+ out[0] = a[0] - b[0];
|
|
|
+ out[1] = a[1] - b[1];
|
|
|
+ out[2] = a[2] - b[2];
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function scale(out: number[], a: number[], b: number) {
|
|
|
+ out[0] = a[0] * b;
|
|
|
+ out[1] = a[1] * b;
|
|
|
+ out[2] = a[2] * b;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function scaleAndAdd(out: number[], a: number[], b: number[], scale: number) {
|
|
|
+ out[0] = a[0] + (b[0] * scale);
|
|
|
+ out[1] = a[1] + (b[1] * scale);
|
|
|
+ out[2] = a[2] + (b[2] * scale);
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function distance(a: number[], b: number[]) {
|
|
|
+ let x = b[0] - a[0],
|
|
|
+ y = b[1] - a[1],
|
|
|
+ z = b[2] - a[2];
|
|
|
+ return Math.sqrt(x * x + y * y + z * z);
|
|
|
+ }
|
|
|
+
|
|
|
+ export function squaredDistance(a: number[], b: number[]) {
|
|
|
+ let x = b[0] - a[0],
|
|
|
+ y = b[1] - a[1],
|
|
|
+ z = b[2] - a[2];
|
|
|
+ return x * x + y * y + z * z;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function magnitude(a: number[]) {
|
|
|
+ let x = a[0],
|
|
|
+ y = a[1],
|
|
|
+ z = a[2];
|
|
|
+ return Math.sqrt(x * x + y * y + z * z);
|
|
|
+ }
|
|
|
+
|
|
|
+ export function squaredMagnitude(a: number[]) {
|
|
|
+ let x = a[0],
|
|
|
+ y = a[1],
|
|
|
+ z = a[2];
|
|
|
+ return x * x + y * y + z * z;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function normalize(out: number[], a: number[]) {
|
|
|
+ let x = a[0],
|
|
|
+ y = a[1],
|
|
|
+ z = a[2];
|
|
|
+ let len = x * x + y * y + z * z;
|
|
|
+ if (len > 0) {
|
|
|
+ len = 1 / Math.sqrt(len);
|
|
|
+ out[0] = a[0] * len;
|
|
|
+ out[1] = a[1] * len;
|
|
|
+ out[2] = a[2] * len;
|
|
|
+ }
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function dot(a: number[], b: number[]) {
|
|
|
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
|
|
+ }
|
|
|
+
|
|
|
+ export function cross(out: number[], a: number[], b: number[]) {
|
|
|
+ let ax = a[0], ay = a[1], az = a[2],
|
|
|
+ bx = b[0], by = b[1], bz = b[2];
|
|
|
+
|
|
|
+ out[0] = ay * bz - az * by;
|
|
|
+ out[1] = az * bx - ax * bz;
|
|
|
+ out[2] = ax * by - ay * bx;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function lerp(out: number[], a: number[], b: number[], t: number) {
|
|
|
+ let ax = a[0],
|
|
|
+ ay = a[1],
|
|
|
+ az = a[2];
|
|
|
+ out[0] = ax + t * (b[0] - ax);
|
|
|
+ out[1] = ay + t * (b[1] - ay);
|
|
|
+ out[2] = az + t * (b[2] - az);
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function transformMat4(out: number[], a: number[], m: number[]) {
|
|
|
+ let x = a[0], y = a[1], z = a[2],
|
|
|
+ w = m[3] * x + m[7] * y + m[11] * z + m[15];
|
|
|
+ w = w || 1.0;
|
|
|
+ out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
|
|
|
+ out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
|
|
|
+ out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ const angleTempA = zero(), angleTempB = zero();
|
|
|
+ export function angle(a: number[], b: number[]) {
|
|
|
+ copy(angleTempA, a);
|
|
|
+ copy(angleTempB, b);
|
|
|
+
|
|
|
+ normalize(angleTempA, angleTempA);
|
|
|
+ normalize(angleTempB, angleTempB);
|
|
|
+
|
|
|
+ let cosine = dot(angleTempA, angleTempB);
|
|
|
+
|
|
|
+ if (cosine > 1.0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ else if (cosine < -1.0) {
|
|
|
+ return Math.PI;
|
|
|
+ } else {
|
|
|
+ return Math.acos(cosine);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ const rotTemp = zero();
|
|
|
+ export function makeRotation(mat: Mat4, a: Vec3, b: Vec3): Mat4 {
|
|
|
+ const by = angle(a, b);
|
|
|
+ if (Math.abs(by) < 0.0001) return Mat4.fromIdentity(mat);
|
|
|
+ const axis = cross(rotTemp, a, b);
|
|
|
+ return Mat4.fromRotation(mat, by, axis);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+export function Vec4(x?: number, y?: number, z?: number, w?: number) {
|
|
|
+ return Vec4.fromValues(x || 0, y || 0, z || 0, w || 0);
|
|
|
+}
|
|
|
+
|
|
|
+export namespace Vec4 {
|
|
|
+ export function zero(): number[] {
|
|
|
+ // force double backing array by 0.1.
|
|
|
+ const ret = [0.1, 0, 0, 0];
|
|
|
+ ret[0] = 0.0;
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function clone(a: number[]) {
|
|
|
+ let out = zero();
|
|
|
+ out[0] = a[0];
|
|
|
+ out[1] = a[1];
|
|
|
+ out[2] = a[2];
|
|
|
+ out[3] = a[3];
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function fromValues(x: number, y: number, z: number, w: number) {
|
|
|
+ let out = zero();
|
|
|
+ out[0] = x;
|
|
|
+ out[1] = y;
|
|
|
+ out[2] = z;
|
|
|
+ out[3] = w;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function set(out: number[], x: number, y: number, z: number, w: number) {
|
|
|
+ out[0] = x;
|
|
|
+ out[1] = y;
|
|
|
+ out[2] = z;
|
|
|
+ out[3] = w;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function distance(a: number[], b: number[]) {
|
|
|
+ let x = b[0] - a[0],
|
|
|
+ y = b[1] - a[1],
|
|
|
+ z = b[2] - a[2],
|
|
|
+ w = b[3] - a[3];
|
|
|
+ return Math.sqrt(x * x + y * y + z * z + w * w);
|
|
|
+ }
|
|
|
+
|
|
|
+ export function squaredDistance(a: number[], b: number[]) {
|
|
|
+ let x = b[0] - a[0],
|
|
|
+ y = b[1] - a[1],
|
|
|
+ z = b[2] - a[2],
|
|
|
+ w = b[3] - a[3];
|
|
|
+ return x * x + y * y + z * z + w * w;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function norm(a: number[]) {
|
|
|
+ let x = a[0],
|
|
|
+ y = a[1],
|
|
|
+ z = a[2],
|
|
|
+ w = a[3];
|
|
|
+ return Math.sqrt(x * x + y * y + z * z + w * w);
|
|
|
+ }
|
|
|
+
|
|
|
+ export function squaredNorm(a: number[]) {
|
|
|
+ let x = a[0],
|
|
|
+ y = a[1],
|
|
|
+ z = a[2],
|
|
|
+ w = a[3];
|
|
|
+ return x * x + y * y + z * z + w * w;
|
|
|
+ }
|
|
|
+
|
|
|
+ export function transform(out: number[], a: number[], m: number[]) {
|
|
|
+ let x = a[0], y = a[1], z = a[2], w = a[3];
|
|
|
+ out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
|
|
|
+ out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
|
|
|
+ out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
|
|
|
+ out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
|
|
|
+ return out;
|
|
|
+ }
|
|
|
+}
|