/** * Copyright (c) 2017-2018 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal * @author Alexander Rose */ /* * This code has been modified from https://github.com/toji/gl-matrix/, * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: */ /* * Quat.fromUnitVec3 has been modified from https://github.com/Jam3/quat-from-unit-vec3, * copyright (c) 2015 Jam3. MIT License */ import { Mat3 } from './mat3'; import { Vec3 } from './vec3'; import { EPSILON } from './common'; import { NumberArray } from '../../../mol-util/type-helpers'; interface Quat extends Array { [d: number]: number, '@type': 'quat', length: 4 } interface ReadonlyQuat extends Array { readonly [d: number]: number, '@type': 'quat', length: 4 } function Quat() { return Quat.zero(); } namespace Quat { export function zero(): Quat { // force double backing array by 0.1. const ret = [0.1, 0, 0, 0]; ret[0] = 0.0; return ret as any; } export function identity(): Quat { const out = zero(); out[3] = 1; return out; } export function setIdentity(out: Quat) { out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 1; } export function hasNaN(q: Quat) { return isNaN(q[0]) || isNaN(q[1]) || isNaN(q[2]) || isNaN(q[3]); } export function create(x: number, y: number, z: number, w: number) { const out = identity(); out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } export function setAxisAngle(out: Quat, axis: Vec3, rad: number) { rad = rad * 0.5; const s = Math.sin(rad); out[0] = s * axis[0]; out[1] = s * axis[1]; out[2] = s * axis[2]; out[3] = Math.cos(rad); return out; } /** * Gets the rotation axis and angle for a given * quaternion. If a quaternion is created with * setAxisAngle, this method will return the same * values as providied in the original parameter list * OR functionally equivalent values. * Example: The quaternion formed by axis [0, 0, 1] and * angle -90 is the same as the quaternion formed by * [0, 0, 1] and 270. This method favors the latter. */ export function getAxisAngle(out_axis: Vec3, q: Quat) { const rad = Math.acos(q[3]) * 2.0; const s = Math.sin(rad / 2.0); if (s !== 0.0) { out_axis[0] = q[0] / s; out_axis[1] = q[1] / s; out_axis[2] = q[2] / s; } else { // If s is zero, return any axis (no rotation - axis does not matter) out_axis[0] = 1; out_axis[1] = 0; out_axis[2] = 0; } return rad; } export function multiply(out: Quat, a: Quat, b: Quat) { const ax = a[0], ay = a[1], az = a[2], aw = a[3]; const bx = b[0], by = b[1], bz = b[2], bw = b[3]; out[0] = ax * bw + aw * bx + ay * bz - az * by; out[1] = ay * bw + aw * by + az * bx - ax * bz; out[2] = az * bw + aw * bz + ax * by - ay * bx; out[3] = aw * bw - ax * bx - ay * by - az * bz; return out; } export function rotateX(out: Quat, a: Quat, rad: number) { rad *= 0.5; const ax = a[0], ay = a[1], az = a[2], aw = a[3]; const bx = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw + aw * bx; out[1] = ay * bw + az * bx; out[2] = az * bw - ay * bx; out[3] = aw * bw - ax * bx; return out; } export function rotateY(out: Quat, a: Quat, rad: number) { rad *= 0.5; const ax = a[0], ay = a[1], az = a[2], aw = a[3]; const by = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw - az * by; out[1] = ay * bw + aw * by; out[2] = az * bw + ax * by; out[3] = aw * bw - ay * by; return out; } export function rotateZ(out: Quat, a: Quat, rad: number) { rad *= 0.5; const ax = a[0], ay = a[1], az = a[2], aw = a[3]; const bz = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw + ay * bz; out[1] = ay * bw - ax * bz; out[2] = az * bw + aw * bz; out[3] = aw * bw - az * bz; return out; } /** * Calculates the W component of a quat from the X, Y, and Z components. * Assumes that quaternion is 1 unit in length. * Any existing W component will be ignored. */ export function calculateW(out: Quat, a: Quat) { const x = a[0], y = a[1], z = a[2]; out[0] = x; out[1] = y; out[2] = z; out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z)); return out; } /** * Performs a spherical linear interpolation between two quat */ export function slerp(out: Quat, a: Quat, b: Quat, t: number) { // benchmarks: // http://jsperf.com/quaternion-slerp-implementations const ax = a[0], ay = a[1], az = a[2], aw = a[3]; let bx = b[0], by = b[1], bz = b[2], bw = b[3]; let omega, cosom, sinom, scale0, scale1; // calc cosine cosom = ax * bx + ay * by + az * bz + aw * bw; // adjust signs (if necessary) if (cosom < 0.0) { cosom = -cosom; bx = - bx; by = - by; bz = - bz; bw = - bw; } // calculate coefficients if ((1.0 - cosom) > 0.000001) { // standard case (slerp) omega = Math.acos(cosom); sinom = Math.sin(omega); scale0 = Math.sin((1.0 - t) * omega) / sinom; scale1 = Math.sin(t * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - t; scale1 = t; } // calculate final values out[0] = scale0 * ax + scale1 * bx; out[1] = scale0 * ay + scale1 * by; out[2] = scale0 * az + scale1 * bz; out[3] = scale0 * aw + scale1 * bw; return out; } export function invert(out: Quat, a: Quat) { const a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; const dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3; const invDot = dot ? 1.0 / dot : 0; // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0 out[0] = -a0 * invDot; out[1] = -a1 * invDot; out[2] = -a2 * invDot; out[3] = a3 * invDot; return out; } /** * Calculates the conjugate of a quat * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result. */ export function conjugate(out: Quat, a: Quat) { out[0] = -a[0]; out[1] = -a[1]; out[2] = -a[2]; out[3] = a[3]; return out; } /** * Creates a quaternion from the given 3x3 rotation matrix. * * NOTE: The resultant quaternion is not normalized, so you should be sure * to renormalize the quaternion yourself where necessary. */ export function fromMat3(out: Quat, m: Mat3) { // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes // article "Quaternion Calculus and Fast Animation". const fTrace = m[0] + m[4] + m[8]; let fRoot; if (fTrace > 0.0) { // |w| > 1/2, may as well choose w > 1/2 fRoot = Math.sqrt(fTrace + 1.0); // 2w out[3] = 0.5 * fRoot; fRoot = 0.5 / fRoot; // 1/(4w) out[0] = (m[5] - m[7]) * fRoot; out[1] = (m[6] - m[2]) * fRoot; out[2] = (m[1] - m[3]) * fRoot; } else { // |w| <= 1/2 let i = 0; if (m[4] > m[0]) i = 1; if (m[8] > m[i * 3 + i]) i = 2; const j = (i + 1) % 3; const k = (i + 2) % 3; fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0); out[i] = 0.5 * fRoot; fRoot = 0.5 / fRoot; out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot; out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot; out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot; } return out; } const fromUnitVec3Temp = [0, 0, 0] as Vec3; /** Quaternion from two normalized unit vectors. */ export function fromUnitVec3(out: Quat, a: Vec3, b: Vec3) { // assumes a and b are normalized let r = Vec3.dot(a, b) + 1; if (r < EPSILON) { // If u and v are exactly opposite, rotate 180 degrees // around an arbitrary orthogonal axis. Axis normalisation // can happen later, when we normalise the quaternion. r = 0; if (Math.abs(a[0]) > Math.abs(a[2])) { Vec3.set(fromUnitVec3Temp, -a[1], a[0], 0); } else { Vec3.set(fromUnitVec3Temp, 0, -a[2], a[1]); } } else { // Otherwise, build quaternion the standard way. Vec3.cross(fromUnitVec3Temp, a, b); } out[0] = fromUnitVec3Temp[0]; out[1] = fromUnitVec3Temp[1]; out[2] = fromUnitVec3Temp[2]; out[3] = r; normalize(out, out); return out; } export function clone(a: Quat) { const out = zero(); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } export function toArray(a: Quat, out: NumberArray, offset: number) { out[offset + 0] = a[0]; out[offset + 1] = a[1]; out[offset + 2] = a[2]; out[offset + 3] = a[3]; return out; } export function fromArray(a: Quat, array: NumberArray, offset: number) { a[0] = array[offset + 0]; a[1] = array[offset + 1]; a[2] = array[offset + 2]; a[3] = array[offset + 3]; return a; } export function copy(out: Quat, a: Quat) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } export function set(out: Quat, x: number, y: number, z: number, w: number) { out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } export function add(out: Quat, a: Quat, b: Quat) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; return out; } export function normalize(out: Quat, a: Quat) { const x = a[0]; const y = a[1]; const z = a[2]; const w = a[3]; let len = x * x + y * y + z * z + w * w; if (len > 0) { len = 1 / Math.sqrt(len); out[0] = x * len; out[1] = y * len; out[2] = z * len; out[3] = w * len; } return out; } /** * Sets a quaternion to represent the shortest rotation from one * vector to another. * * Both vectors are assumed to be unit length. */ const rotTmpVec3 = [0, 0, 0] as Vec3; const rotTmpVec3UnitX = [1, 0, 0] as Vec3; const rotTmpVec3UnitY = [0, 1, 0] as Vec3; export function rotationTo(out: Quat, a: Vec3, b: Vec3) { const dot = Vec3.dot(a, b); if (dot < -0.999999) { Vec3.cross(rotTmpVec3, rotTmpVec3UnitX, a); if (Vec3.magnitude(rotTmpVec3) < 0.000001) Vec3.cross(rotTmpVec3, rotTmpVec3UnitY, a); Vec3.normalize(rotTmpVec3, rotTmpVec3); setAxisAngle(out, rotTmpVec3, Math.PI); return out; } else if (dot > 0.999999) { out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 1; return out; } else { Vec3.cross(rotTmpVec3, a, b); out[0] = rotTmpVec3[0]; out[1] = rotTmpVec3[1]; out[2] = rotTmpVec3[2]; out[3] = 1 + dot; return normalize(out, out); } } /** * Performs a spherical linear interpolation with two control points */ const sqlerpTemp1 = zero(); const sqlerpTemp2 = zero(); export function sqlerp(out: Quat, a: Quat, b: Quat, c: Quat, d: Quat, t: number) { slerp(sqlerpTemp1, a, d, t); slerp(sqlerpTemp2, b, c, t); slerp(out, sqlerpTemp1, sqlerpTemp2, 2 * t * (1 - t)); return out; } /** * Sets the specified quaternion with values corresponding to the given * axes. Each axis is a vec3 and is expected to be unit length and * perpendicular to all other specified axes. */ const axesTmpMat = [0, 0, 0, 0, 0, 0, 0, 0, 0] as Mat3; export function setAxes(out: Quat, view: Vec3, right: Vec3, up: Vec3) { axesTmpMat[0] = right[0]; axesTmpMat[3] = right[1]; axesTmpMat[6] = right[2]; axesTmpMat[1] = up[0]; axesTmpMat[4] = up[1]; axesTmpMat[7] = up[2]; axesTmpMat[2] = -view[0]; axesTmpMat[5] = -view[1]; axesTmpMat[8] = -view[2]; return normalize(out, fromMat3(out, axesTmpMat)); } export function toString(a: Quat, precision?: number) { return `[${a[0].toPrecision(precision)} ${a[1].toPrecision(precision)} ${a[2].toPrecision(precision)} ${a[3].toPrecision(precision)}]`; } export const Identity: ReadonlyQuat = identity(); } export { Quat };