/** * Copyright (c) 2018 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal */ import { Task, RuntimeContext } from 'mol-task' import { ValueCell } from 'mol-util' import { Vec3, Mat4 } from 'mol-math/linear-algebra' import { Sphere3D } from 'mol-math/geometry' import { transformPositionArray/* , transformDirectionArray, getNormalMatrix */ } from '../../util'; import { Geometry } from '../geometry'; import { createMarkers } from '../marker-data'; import { TransformData } from '../transform-data'; import { LocationIterator } from '../../util/location-iterator'; import { createColors } from '../color-data'; import { ChunkedArray } from 'mol-data/util'; import { ParamDefinition as PD } from 'mol-util/param-definition'; import { calculateBoundingSphere } from 'mol-gl/renderable/util'; import { Theme } from 'mol-theme/theme'; import { MeshValues } from 'mol-gl/renderable/mesh'; export interface Mesh { readonly kind: 'mesh', /** Number of vertices in the mesh */ vertexCount: number, /** Number of triangles in the mesh */ triangleCount: number, /** Vertex buffer as array of xyz values wrapped in a value cell */ readonly vertexBuffer: ValueCell, /** Index buffer as array of vertex index triplets wrapped in a value cell */ readonly indexBuffer: ValueCell, /** Normal buffer as array of xyz values for each vertex wrapped in a value cell */ readonly normalBuffer: ValueCell, /** Group buffer as array of group ids for each vertex wrapped in a value cell */ readonly groupBuffer: ValueCell, /** Flag indicating if normals are computed for the current set of vertices */ normalsComputed: boolean, /** Bounding sphere of the mesh */ boundingSphere?: Sphere3D } export namespace Mesh { export function createEmpty(mesh?: Mesh): Mesh { const vb = mesh ? mesh.vertexBuffer.ref.value : new Float32Array(0) const ib = mesh ? mesh.indexBuffer.ref.value : new Uint32Array(0) const nb = mesh ? mesh.normalBuffer.ref.value : new Float32Array(0) const gb = mesh ? mesh.groupBuffer.ref.value : new Float32Array(0) return { kind: 'mesh', vertexCount: 0, triangleCount: 0, vertexBuffer: mesh ? ValueCell.update(mesh.vertexBuffer, vb) : ValueCell.create(vb), indexBuffer: mesh ? ValueCell.update(mesh.indexBuffer, ib) : ValueCell.create(ib), normalBuffer: mesh ? ValueCell.update(mesh.normalBuffer, nb) : ValueCell.create(nb), groupBuffer: mesh ? ValueCell.update(mesh.groupBuffer, gb) : ValueCell.create(gb), normalsComputed: true, } } export function computeNormalsImmediate(mesh: Mesh) { if (mesh.normalsComputed) return; const normals = mesh.normalBuffer.ref.value.length >= mesh.vertexCount * 3 ? mesh.normalBuffer.ref.value : new Float32Array(mesh.vertexBuffer.ref.value.length); const v = mesh.vertexBuffer.ref.value, triangles = mesh.indexBuffer.ref.value; if (normals === mesh.normalBuffer.ref.value) { for (let i = 0, ii = 3 * mesh.vertexCount; i < ii; i += 3) { normals[i] = 0; normals[i + 1] = 0; normals[i + 2] = 0; } } const x = Vec3.zero(), y = Vec3.zero(), z = Vec3.zero(), d1 = Vec3.zero(), d2 = Vec3.zero(), n = Vec3.zero(); for (let i = 0, ii = 3 * mesh.triangleCount; i < ii; i += 3) { const a = 3 * triangles[i], b = 3 * triangles[i + 1], c = 3 * triangles[i + 2]; Vec3.fromArray(x, v, a); Vec3.fromArray(y, v, b); Vec3.fromArray(z, v, c); Vec3.sub(d1, z, y); Vec3.sub(d2, x, y); Vec3.cross(n, d1, d2); normals[a] += n[0]; normals[a + 1] += n[1]; normals[a + 2] += n[2]; normals[b] += n[0]; normals[b + 1] += n[1]; normals[b + 2] += n[2]; normals[c] += n[0]; normals[c + 1] += n[1]; normals[c + 2] += n[2]; } for (let i = 0, ii = 3 * mesh.vertexCount; i < ii; i += 3) { const nx = normals[i]; const ny = normals[i + 1]; const nz = normals[i + 2]; const f = 1.0 / Math.sqrt(nx * nx + ny * ny + nz * nz); normals[i] *= f; normals[i + 1] *= f; normals[i + 2] *= f; // console.log([normals[i], normals[i + 1], normals[i + 2]], [v[i], v[i + 1], v[i + 2]]) } ValueCell.update(mesh.normalBuffer, normals); mesh.normalsComputed = true; } export function checkForDuplicateVertices(mesh: Mesh, fractionDigits = 3) { const v = mesh.vertexBuffer.ref.value const map = new Map() const hash = (v: Vec3, d: number) => `${v[0].toFixed(d)}|${v[1].toFixed(d)}|${v[2].toFixed(d)}` let duplicates = 0 const a = Vec3.zero() for (let i = 0, il = mesh.vertexCount; i < il; ++i) { Vec3.fromArray(a, v, i * 3) const k = hash(a, fractionDigits) const count = map.get(k) if (count !== undefined) { duplicates += 1 map.set(k, count + 1) } else { map.set(k, 1) } } return duplicates } export function computeNormals(surface: Mesh): Task { return Task.create('Surface (Compute Normals)', async ctx => { if (surface.normalsComputed) return surface; await ctx.update('Computing normals...'); computeNormalsImmediate(surface); return surface; }); } export function transformImmediate(mesh: Mesh, t: Mat4) { transformRangeImmediate(mesh, t, 0, mesh.vertexCount) } export function transformRangeImmediate(mesh: Mesh, t: Mat4, offset: number, count: number) { const v = mesh.vertexBuffer.ref.value transformPositionArray(t, v, offset, count) // TODO normals transformation does not work for an unknown reason, ASR // if (mesh.normalBuffer.ref.value) { // const n = getNormalMatrix(Mat3.zero(), t) // transformDirectionArray(n, mesh.normalBuffer.ref.value, offset, count) // mesh.normalsComputed = true; // } ValueCell.update(mesh.vertexBuffer, v); mesh.normalsComputed = false; } export function computeBoundingSphere(mesh: Mesh): Task { return Task.create('Mesh (Compute Bounding Sphere)', async ctx => { if (mesh.boundingSphere) { return mesh; } await ctx.update('Computing bounding sphere...'); const vertices = mesh.vertexBuffer.ref.value; let x = 0, y = 0, z = 0; for (let i = 0, _c = vertices.length; i < _c; i += 3) { x += vertices[i]; y += vertices[i + 1]; z += vertices[i + 2]; } x /= mesh.vertexCount; y /= mesh.vertexCount; z /= mesh.vertexCount; let r = 0; for (let i = 0, _c = vertices.length; i < _c; i += 3) { const dx = x - vertices[i]; const dy = y - vertices[i + 1]; const dz = z - vertices[i + 2]; r = Math.max(r, dx * dx + dy * dy + dz * dz); } mesh.boundingSphere = { center: Vec3.create(x, y, z), radius: Math.sqrt(r) } return mesh; }); } /** * Ensure that each vertices of each triangle have the same group id. * Note that normals are copied over and can't be re-created from the new mesh. */ export function uniformTriangleGroup(mesh: Mesh, splitTriangles = true) { const { indexBuffer, vertexBuffer, groupBuffer, normalBuffer, triangleCount, vertexCount } = mesh const ib = indexBuffer.ref.value const vb = vertexBuffer.ref.value const gb = groupBuffer.ref.value const nb = normalBuffer.ref.value // new const index = ChunkedArray.create(Uint32Array, 3, 1024, triangleCount) // re-use const vertex = ChunkedArray.create(Float32Array, 3, 1024, vb) vertex.currentIndex = vertexCount * 3 vertex.elementCount = vertexCount const normal = ChunkedArray.create(Float32Array, 3, 1024, nb) normal.currentIndex = vertexCount * 3 normal.elementCount = vertexCount const group = ChunkedArray.create(Float32Array, 1, 1024, gb) group.currentIndex = vertexCount group.elementCount = vertexCount const vi = Vec3.zero() const vj = Vec3.zero() const vk = Vec3.zero() const ni = Vec3.zero() const nj = Vec3.zero() const nk = Vec3.zero() function add(i: number) { Vec3.fromArray(vi, vb, i * 3) Vec3.fromArray(ni, nb, i * 3) ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]) ChunkedArray.add3(normal, ni[0], ni[1], ni[2]) } function addMid(i: number, j: number) { Vec3.fromArray(vi, vb, i * 3) Vec3.fromArray(vj, vb, j * 3) Vec3.scale(vi, Vec3.add(vi, vi, vj), 0.5) Vec3.fromArray(ni, nb, i * 3) Vec3.fromArray(nj, nb, j * 3) Vec3.scale(ni, Vec3.add(ni, ni, nj), 0.5) ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]) ChunkedArray.add3(normal, ni[0], ni[1], ni[2]) } function addCenter(i: number, j: number, k: number) { Vec3.fromArray(vi, vb, i * 3) Vec3.fromArray(vj, vb, j * 3) Vec3.fromArray(vk, vb, k * 3) Vec3.scale(vi, Vec3.add(vi, Vec3.add(vi, vi, vj), vk), 1/3) Vec3.fromArray(ni, nb, i * 3) Vec3.fromArray(nj, nb, j * 3) Vec3.fromArray(nk, nb, k * 3) Vec3.scale(ni, Vec3.add(ni, Vec3.add(ni, ni, nj), nk), 1/3) ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]) ChunkedArray.add3(normal, ni[0], ni[1], ni[2]) } function split2(i0: number, i1: number, i2: number, g0: number, g1: number) { ++newTriangleCount add(i0); addMid(i0, i1); addMid(i0, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 2) for (let j = 0; j < 3; ++j) ChunkedArray.add(group, g0) newVertexCount += 3 newTriangleCount += 2 add(i1); add(i2); addMid(i0, i1); addMid(i0, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3) ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2) for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g1) newVertexCount += 4 } let newVertexCount = vertexCount let newTriangleCount = 0 if (splitTriangles) { for (let i = 0, il = triangleCount; i < il; ++i) { const i0 = ib[i * 3], i1 = ib[i * 3 + 1], i2 = ib[i * 3 + 2] const g0 = gb[i0], g1 = gb[i1], g2 = gb[i2] if (g0 === g1 && g0 === g2) { ++newTriangleCount ChunkedArray.add3(index, i0, i1, i2) } else if (g0 === g1) { split2(i2, i0, i1, g2, g0) } else if (g0 === g2) { split2(i1, i2, i0, g1, g2) } else if (g1 === g2) { split2(i0, i1, i2, g0, g1) } else { newTriangleCount += 2 add(i0); addMid(i0, i1); addMid(i0, i2); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3) ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2) for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g0) newVertexCount += 4 newTriangleCount += 2 add(i1); addMid(i1, i2); addMid(i1, i0); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3) ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2) for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g1) newVertexCount += 4 newTriangleCount += 2 add(i2); addMid(i2, i1); addMid(i2, i0); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount + 3, newVertexCount + 1, newVertexCount) ChunkedArray.add3(index, newVertexCount + 2, newVertexCount + 3, newVertexCount) for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g2) newVertexCount += 4 } } } else { for (let i = 0, il = triangleCount; i < il; ++i) { const i0 = ib[i * 3], i1 = ib[i * 3 + 1], i2 = ib[i * 3 + 2] const g0 = gb[i0], g1 = gb[i1], g2 = gb[i2] if (g0 !== g1 || g0 !== g2) { ++newTriangleCount add(i0); add(i1); add(i2) ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 2) const g = g1 === g2 ? g1 : g0 for (let j = 0; j < 3; ++j) ChunkedArray.add(group, g) newVertexCount += 3 } else { ++newTriangleCount ChunkedArray.add3(index, i0, i1, i2) } } } const newIb = ChunkedArray.compact(index) const newVb = ChunkedArray.compact(vertex) const newNb = ChunkedArray.compact(normal) const newGb = ChunkedArray.compact(group) mesh.vertexCount = newVertexCount mesh.triangleCount = newTriangleCount ValueCell.update(vertexBuffer, newVb) as ValueCell ValueCell.update(groupBuffer, newGb) as ValueCell ValueCell.update(indexBuffer, newIb) as ValueCell ValueCell.update(normalBuffer, newNb) as ValueCell return mesh } // export const Params = { ...Geometry.Params, doubleSided: PD.Boolean(false), flipSided: PD.Boolean(false), flatShaded: PD.Boolean(false), } export type Params = typeof Params export async function createValues(ctx: RuntimeContext, mesh: Mesh, transform: TransformData, locationIt: LocationIterator, theme: Theme, props: PD.Values): Promise { const { instanceCount, groupCount } = locationIt const color = await createColors(ctx, locationIt, theme.color) const marker = createMarkers(instanceCount * groupCount) const counts = { drawCount: mesh.triangleCount * 3, groupCount, instanceCount } const boundingSphere = calculateBoundingSphere( mesh.vertexBuffer.ref.value, mesh.vertexCount, transform.aTransform.ref.value, transform.instanceCount.ref.value ) return { aPosition: mesh.vertexBuffer, aNormal: mesh.normalBuffer, aGroup: mesh.groupBuffer, elements: mesh.indexBuffer, boundingSphere: ValueCell.create(boundingSphere), ...color, ...marker, ...transform, ...Geometry.createValues(props, counts), dDoubleSided: ValueCell.create(props.doubleSided), dFlatShaded: ValueCell.create(props.flatShaded), dFlipSided: ValueCell.create(props.flipSided), } } export function updateValues(values: MeshValues, props: PD.Values) { const boundingSphere = calculateBoundingSphere( values.aPosition.ref.value, Math.floor(values.aPosition.ref.value.length / 3), values.aTransform.ref.value, values.instanceCount.ref.value ) if (!Sphere3D.equals(boundingSphere, values.boundingSphere.ref.value)) { ValueCell.update(values.boundingSphere, boundingSphere) } Geometry.updateValues(values, props) ValueCell.updateIfChanged(values.dDoubleSided, props.doubleSided) ValueCell.updateIfChanged(values.dFlatShaded, props.flatShaded) ValueCell.updateIfChanged(values.dFlipSided, props.flipSided) } } // function addVertex(src: Float32Array, i: number, dst: Float32Array, j: number) { // dst[3 * j] += src[3 * i]; // dst[3 * j + 1] += src[3 * i + 1]; // dst[3 * j + 2] += src[3 * i + 2]; // } // function laplacianSmoothIter(surface: Surface, vertexCounts: Int32Array, vs: Float32Array, vertexWeight: number) { // const triCount = surface.triangleIndices.length, // src = surface.vertices; // const triangleIndices = surface.triangleIndices; // for (let i = 0; i < triCount; i += 3) { // const a = triangleIndices[i], // b = triangleIndices[i + 1], // c = triangleIndices[i + 2]; // addVertex(src, b, vs, a); // addVertex(src, c, vs, a); // addVertex(src, a, vs, b); // addVertex(src, c, vs, b); // addVertex(src, a, vs, c); // addVertex(src, b, vs, c); // } // const vw = 2 * vertexWeight; // for (let i = 0, _b = surface.vertexCount; i < _b; i++) { // const n = vertexCounts[i] + vw; // vs[3 * i] = (vs[3 * i] + vw * src[3 * i]) / n; // vs[3 * i + 1] = (vs[3 * i + 1] + vw * src[3 * i + 1]) / n; // vs[3 * i + 2] = (vs[3 * i + 2] + vw * src[3 * i + 2]) / n; // } // } // async function laplacianSmoothComputation(ctx: Computation.Context, surface: Surface, iterCount: number, vertexWeight: number) { // await ctx.updateProgress('Smoothing surface...', true); // const vertexCounts = new Int32Array(surface.vertexCount), // triCount = surface.triangleIndices.length; // const tris = surface.triangleIndices; // for (let i = 0; i < triCount; i++) { // // in a triangle 2 edges touch each vertex, hence the constant. // vertexCounts[tris[i]] += 2; // } // let vs = new Float32Array(surface.vertices.length); // let started = Utils.PerformanceMonitor.currentTime(); // await ctx.updateProgress('Smoothing surface...', true); // for (let i = 0; i < iterCount; i++) { // if (i > 0) { // for (let j = 0, _b = vs.length; j < _b; j++) vs[j] = 0; // } // surface.normals = void 0; // laplacianSmoothIter(surface, vertexCounts, vs, vertexWeight); // const t = surface.vertices; // surface.vertices = vs; // vs = t; // const time = Utils.PerformanceMonitor.currentTime(); // if (time - started > Computation.UpdateProgressDelta) { // started = time; // await ctx.updateProgress('Smoothing surface...', true, i + 1, iterCount); // } // } // return surface; // } // /* // * Smooths the vertices by averaging the neighborhood. // * // * Resets normals. Might replace vertex array. // */ // export function laplacianSmooth(surface: Surface, iterCount: number = 1, vertexWeight: number = 1): Computation { // if (iterCount < 1) iterCount = 0; // if (iterCount === 0) return Computation.resolve(surface); // return computation(async ctx => await laplacianSmoothComputation(ctx, surface, iterCount, (1.1 * vertexWeight) / 1.1)); // }