/** * Copyright (c) 2019 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose * * adapted from https://github.com/internalfx/distinct-colors (ISC License Copyright (c) 2015, InternalFX Inc.) * which is heavily inspired by http://tools.medialab.sciences-po.fr/iwanthue/ */ import { Lab } from './spaces/lab'; import { Hcl } from './spaces/hcl'; import { deepClone } from '../../mol-util/object'; import { deepEqual } from '../../mol-util'; import { arraySum } from '../../mol-util/array'; import { ParamDefinition as PD } from '../../mol-util/param-definition'; import { ColorNames } from './names'; export const DistinctColorsParams = { hue: PD.Interval([1, 360], { min: 0, max: 360, step: 1 }), chroma: PD.Interval([40, 70], { min: 0, max: 100, step: 1 }), luminance: PD.Interval([15, 85], { min: 0, max: 100, step: 1 }), clusteringStepCount: PD.Numeric(50, { min: 10, max: 200, step: 1 }, { isHidden: true }), minSampleCount: PD.Numeric(800, { min: 100, max: 5000, step: 100 }, { isHidden: true }) }; export type DistinctColorsParams = typeof DistinctColorsParams export type DistinctColorsProps = PD.Values function distance(colorA: Lab, colorB: Lab) { return Math.sqrt( Math.pow(Math.abs(colorA[0] - colorB[0]), 2) + Math.pow(Math.abs(colorA[1] - colorB[1]), 2) + Math.pow(Math.abs(colorA[2] - colorB[2]), 2) ); } const LabTolerance = 2; const tmpCheckColorHcl = [0, 0, 0] as Hcl; const tmpCheckColorLab = [0, 0, 0] as Lab; function checkColor(lab: Lab, props: DistinctColorsProps) { Lab.toHcl(tmpCheckColorHcl, lab); // roundtrip to RGB for conversion tolerance testing Lab.fromColor(tmpCheckColorLab, Lab.toColor(lab)); return ( tmpCheckColorHcl[0] >= props.hue[0] && tmpCheckColorHcl[0] <= props.hue[1] && tmpCheckColorHcl[1] >= props.chroma[0] && tmpCheckColorHcl[1] <= props.chroma[1] && tmpCheckColorHcl[2] >= props.luminance[0] && tmpCheckColorHcl[2] <= props.luminance[1] && tmpCheckColorLab[0] >= (lab[0] - LabTolerance) && tmpCheckColorLab[0] <= (lab[0] + LabTolerance) && tmpCheckColorLab[1] >= (lab[1] - LabTolerance) && tmpCheckColorLab[1] <= (lab[1] + LabTolerance) && tmpCheckColorLab[2] >= (lab[2] - LabTolerance) && tmpCheckColorLab[2] <= (lab[2] + LabTolerance) ); } function sortByContrast(colors: Lab[]) { const unsortedColors = colors.slice(0); const sortedColors = [unsortedColors.shift()!]; while (unsortedColors.length > 0) { const lastColor = sortedColors[sortedColors.length - 1]; let nearest = 0; let maxDist = Number.MIN_SAFE_INTEGER; for (let i = 0; i < unsortedColors.length; ++i) { const dist = distance(lastColor, unsortedColors[i]); if (dist > maxDist) { maxDist = dist; nearest = i; } } sortedColors.push(unsortedColors.splice(nearest, 1)[0]); } return sortedColors; } function getSamples(count: number, p: DistinctColorsProps) { const samples = new Map(); const rangeDivider = Math.cbrt(count) * 1.001; const hStep = (p.hue[1] - p.hue[0]) / rangeDivider; const cStep = (p.chroma[1] - p.chroma[0]) / rangeDivider; const lStep = (p.luminance[1] - p.luminance[0]) / rangeDivider; for (let h = p.hue[0]; h <= p.hue[1]; h += hStep) { for (let c = p.chroma[0]; c <= p.chroma[1]; c += cStep) { for (let l = p.luminance[0]; l <= p.luminance[1]; l += lStep) { const lab = Lab.fromHcl(Lab(), Hcl.create(h, c, l)); if (checkColor(lab, p)) samples.set(lab.toString(), lab); } } } return Array.from(samples.values()); } /** * Create a list of visually distinct colors */ export function distinctColors(count: number, props: Partial = {}) { const p = { ...PD.getDefaultValues(DistinctColorsParams), ...props }; if (count <= 0) return []; const samples = getSamples(Math.max(p.minSampleCount, count * 5), p); if (samples.length < count) { console.warn('Not enough samples to generate distinct colors, increase sample count.'); return (new Array(count)).fill(ColorNames.lightgrey); } const colors: Lab[] = []; const zonesProto: (Lab[])[] = []; const sliceSize = Math.floor(samples.length / count); for (let i = 0; i < samples.length; i += sliceSize) { colors.push(samples[i]); zonesProto.push([]); if (colors.length >= count) break; } for (let step = 1; step <= p.clusteringStepCount; ++step) { const zones = deepClone(zonesProto); // Find closest color for each sample for (let i = 0; i < samples.length; ++i) { let minDist = Number.MAX_SAFE_INTEGER; let nearest = 0; for (let j = 0; j < colors.length; j++) { const dist = distance(samples[i], colors[j]); if (dist < minDist) { minDist = dist; nearest = j; } } zones[nearest].push(samples[i]); } const lastColors = deepClone(colors); for (let i = 0; i < zones.length; ++i) { const zone = zones[i]; const size = zone.length; const Ls: number[] = []; const As: number[] = []; const Bs: number[] = []; for (const sample of zone) { Ls.push(sample[0]); As.push(sample[1]); Bs.push(sample[2]); } const lAvg = arraySum(Ls) / size; const aAvg = arraySum(As) / size; const bAvg = arraySum(Bs) / size; colors[i] = [lAvg, aAvg, bAvg] as Lab; } if (deepEqual(lastColors, colors)) break; } return sortByContrast(colors).map(c => Lab.toColor(c)); }