/** * Copyright (c) 2018 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal */ import { Task } from 'mol-task' import { ValueCell } from 'mol-util' import { Vec3, Mat4 } from 'mol-math/linear-algebra' import { Sphere3D } from 'mol-math/geometry' import { transformPositionArray } from '../util'; export interface Mesh { /** Number of vertices in the mesh */ vertexCount: number, /** Number of triangles in the mesh */ triangleCount: number, /** Vertex buffer as array of xyz values wrapped in a value cell */ vertexBuffer: ValueCell, /** Index buffer as array of vertex index triplets wrapped in a value cell */ indexBuffer: ValueCell, /** Normal buffer as array of xyz values for each vertex wrapped in a value cell */ normalBuffer: ValueCell, /** Id buffer as array of ids for each vertex wrapped in a value cell */ idBuffer: ValueCell, /** Flag indicating if normals are computed for the current set of vertices */ normalsComputed: boolean, /** Bounding sphere of the mesh */ boundingSphere?: Sphere3D } export namespace Mesh { export function computeNormalsImmediate(surface: Mesh) { if (surface.normalsComputed) return; const normals = surface.normalBuffer.ref.value && surface.normalBuffer.ref.value.length >= surface.vertexCount * 3 ? surface.normalBuffer.ref.value : new Float32Array(surface.vertexBuffer.ref.value.length); const v = surface.vertexBuffer.ref.value, triangles = surface.indexBuffer.ref.value; const x = Vec3.zero(), y = Vec3.zero(), z = Vec3.zero(), d1 = Vec3.zero(), d2 = Vec3.zero(), n = Vec3.zero(); for (let i = 0, ii = 3 * surface.triangleCount; i < ii; i += 3) { const a = 3 * triangles[i], b = 3 * triangles[i + 1], c = 3 * triangles[i + 2]; Vec3.fromArray(x, v, a); Vec3.fromArray(y, v, b); Vec3.fromArray(z, v, c); Vec3.sub(d1, z, y); Vec3.sub(d2, y, x); Vec3.cross(n, d1, d2); normals[a] += n[0]; normals[a + 1] += n[1]; normals[a + 2] += n[2]; normals[b] += n[0]; normals[b + 1] += n[1]; normals[b + 2] += n[2]; normals[c] += n[0]; normals[c + 1] += n[1]; normals[c + 2] += n[2]; } for (let i = 0, ii = 3 * surface.vertexCount; i < ii; i += 3) { const nx = normals[i]; const ny = normals[i + 1]; const nz = normals[i + 2]; const f = 1.0 / Math.sqrt(nx * nx + ny * ny + nz * nz); normals[i] *= f; normals[i + 1] *= f; normals[i + 2] *= f; // console.log([normals[i], normals[i + 1], normals[i + 2]], [v[i], v[i + 1], v[i + 2]]) } surface.normalBuffer = ValueCell.update(surface.normalBuffer, normals); surface.normalsComputed = true; } export function computeNormals(surface: Mesh): Task { return Task.create('Surface (Compute Normals)', async ctx => { if (surface.normalsComputed) return surface; await ctx.update('Computing normals...'); computeNormalsImmediate(surface); return surface; }); } export function transformImmediate(mesh: Mesh, t: Mat4) { transformRangeImmediate(mesh, t, 0, mesh.vertexCount) } export function transformRangeImmediate(mesh: Mesh, t: Mat4, offset: number, count: number) { transformPositionArray(t, mesh.vertexBuffer.ref.value, offset, count) // transformDirectionArray(n, mesh.normalBuffer.ref.value, offset, count) // TODO mesh.normalsComputed = false; // mesh.boundingSphere = void 0; } export function computeBoundingSphere(mesh: Mesh): Task { return Task.create('Mesh (Compute Bounding Sphere)', async ctx => { if (mesh.boundingSphere) { return mesh; } await ctx.update('Computing bounding sphere...'); const vertices = mesh.vertexBuffer.ref.value; let x = 0, y = 0, z = 0; for (let i = 0, _c = vertices.length; i < _c; i += 3) { x += vertices[i]; y += vertices[i + 1]; z += vertices[i + 2]; } x /= mesh.vertexCount; y /= mesh.vertexCount; z /= mesh.vertexCount; let r = 0; for (let i = 0, _c = vertices.length; i < _c; i += 3) { const dx = x - vertices[i]; const dy = y - vertices[i + 1]; const dz = z - vertices[i + 2]; r = Math.max(r, dx * dx + dy * dy + dz * dz); } mesh.boundingSphere = { center: Vec3.create(x, y, z), radius: Math.sqrt(r) } return mesh; }); } } // function addVertex(src: Float32Array, i: number, dst: Float32Array, j: number) { // dst[3 * j] += src[3 * i]; // dst[3 * j + 1] += src[3 * i + 1]; // dst[3 * j + 2] += src[3 * i + 2]; // } // function laplacianSmoothIter(surface: Surface, vertexCounts: Int32Array, vs: Float32Array, vertexWeight: number) { // const triCount = surface.triangleIndices.length, // src = surface.vertices; // const triangleIndices = surface.triangleIndices; // for (let i = 0; i < triCount; i += 3) { // const a = triangleIndices[i], // b = triangleIndices[i + 1], // c = triangleIndices[i + 2]; // addVertex(src, b, vs, a); // addVertex(src, c, vs, a); // addVertex(src, a, vs, b); // addVertex(src, c, vs, b); // addVertex(src, a, vs, c); // addVertex(src, b, vs, c); // } // const vw = 2 * vertexWeight; // for (let i = 0, _b = surface.vertexCount; i < _b; i++) { // const n = vertexCounts[i] + vw; // vs[3 * i] = (vs[3 * i] + vw * src[3 * i]) / n; // vs[3 * i + 1] = (vs[3 * i + 1] + vw * src[3 * i + 1]) / n; // vs[3 * i + 2] = (vs[3 * i + 2] + vw * src[3 * i + 2]) / n; // } // } // async function laplacianSmoothComputation(ctx: Computation.Context, surface: Surface, iterCount: number, vertexWeight: number) { // await ctx.updateProgress('Smoothing surface...', true); // const vertexCounts = new Int32Array(surface.vertexCount), // triCount = surface.triangleIndices.length; // const tris = surface.triangleIndices; // for (let i = 0; i < triCount; i++) { // // in a triangle 2 edges touch each vertex, hence the constant. // vertexCounts[tris[i]] += 2; // } // let vs = new Float32Array(surface.vertices.length); // let started = Utils.PerformanceMonitor.currentTime(); // await ctx.updateProgress('Smoothing surface...', true); // for (let i = 0; i < iterCount; i++) { // if (i > 0) { // for (let j = 0, _b = vs.length; j < _b; j++) vs[j] = 0; // } // surface.normals = void 0; // laplacianSmoothIter(surface, vertexCounts, vs, vertexWeight); // const t = surface.vertices; // surface.vertices = vs; // vs = t; // const time = Utils.PerformanceMonitor.currentTime(); // if (time - started > Computation.UpdateProgressDelta) { // started = time; // await ctx.updateProgress('Smoothing surface...', true, i + 1, iterCount); // } // } // return surface; // } // /* // * Smooths the vertices by averaging the neighborhood. // * // * Resets normals. Might replace vertex array. // */ // export function laplacianSmooth(surface: Surface, iterCount: number = 1, vertexWeight: number = 1): Computation { // if (iterCount < 1) iterCount = 0; // if (iterCount === 0) return Computation.resolve(surface); // return computation(async ctx => await laplacianSmoothComputation(ctx, surface, iterCount, (1.1 * vertexWeight) / 1.1)); // }