/** * Copyright (c) 2018-2023 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose */ import { ParamDefinition as PD } from '../../../mol-util/param-definition'; import { VisualContext } from '../../visual'; import { Unit, Structure } from '../../../mol-model/structure'; import { Theme } from '../../../mol-theme/theme'; import { Mesh } from '../../../mol-geo/geometry/mesh/mesh'; import { MeshBuilder } from '../../../mol-geo/geometry/mesh/mesh-builder'; import { createCurveSegmentState, PolymerTraceIterator, interpolateCurveSegment, interpolateSizes, PolymerLocationIterator, getPolymerElementLoci, eachPolymerElement, HelixTension, NucleicShift, StandardShift, StandardTension, OverhangFactor } from './util/polymer'; import { isNucleic, SecondaryStructureType } from '../../../mol-model/structure/model/types'; import { addSheet } from '../../../mol-geo/geometry/mesh/builder/sheet'; import { addTube } from '../../../mol-geo/geometry/mesh/builder/tube'; import { UnitsMeshParams, UnitsVisual, UnitsMeshVisual } from '../units-visual'; import { VisualUpdateState } from '../../util'; import { SecondaryStructureProvider } from '../../../mol-model-props/computed/secondary-structure'; import { addRibbon } from '../../../mol-geo/geometry/mesh/builder/ribbon'; import { addSphere } from '../../../mol-geo/geometry/mesh/builder/sphere'; import { Vec3 } from '../../../mol-math/linear-algebra'; import { BaseGeometry } from '../../../mol-geo/geometry/base'; import { Sphere3D } from '../../../mol-math/geometry'; import { StructureGroup } from './util/common'; export const PolymerTraceMeshParams = { sizeFactor: PD.Numeric(0.2, { min: 0, max: 10, step: 0.01 }), aspectRatio: PD.Numeric(5, { min: 0.1, max: 10, step: 0.1 }), arrowFactor: PD.Numeric(1.5, { min: 0, max: 3, step: 0.1 }, { description: 'Size factor for sheet arrows' }), tubularHelices: PD.Boolean(false, { description: 'Draw alpha helices as tubes' }), helixProfile: PD.Select('elliptical', PD.arrayToOptions(['elliptical', 'rounded', 'square'] as const), { description: 'Protein helix trace profile' }), nucleicProfile: PD.Select('square', PD.arrayToOptions(['elliptical', 'rounded', 'square'] as const), { description: 'Nucleic strand trace profile' }), detail: PD.Numeric(0, { min: 0, max: 3, step: 1 }, BaseGeometry.CustomQualityParamInfo), linearSegments: PD.Numeric(8, { min: 1, max: 48, step: 1 }, BaseGeometry.CustomQualityParamInfo), radialSegments: PD.Numeric(16, { min: 2, max: 56, step: 2 }, BaseGeometry.CustomQualityParamInfo) }; export const DefaultPolymerTraceMeshProps = PD.getDefaultValues(PolymerTraceMeshParams); export type PolymerTraceMeshProps = typeof DefaultPolymerTraceMeshProps const tmpV1 = Vec3(); function createPolymerTraceMesh(ctx: VisualContext, unit: Unit, structure: Structure, theme: Theme, props: PolymerTraceMeshProps, mesh?: Mesh) { const polymerElementCount = unit.polymerElements.length; if (!polymerElementCount) return Mesh.createEmpty(mesh); const { sizeFactor, detail, linearSegments, radialSegments, aspectRatio, arrowFactor, tubularHelices, helixProfile, nucleicProfile } = props; const vertexCount = linearSegments * radialSegments * polymerElementCount + (radialSegments + 1) * polymerElementCount * 2; const builderState = MeshBuilder.createState(vertexCount, vertexCount / 10, mesh); const isCoarse = Unit.isCoarse(unit); const state = createCurveSegmentState(linearSegments); const { curvePoints, normalVectors, binormalVectors, widthValues, heightValues } = state; let i = 0; const polymerTraceIt = PolymerTraceIterator(unit, structure, { ignoreSecondaryStructure: false, useHelixOrientation: tubularHelices }); while (polymerTraceIt.hasNext) { const v = polymerTraceIt.move(); builderState.currentGroup = i; const isNucleicType = isNucleic(v.moleculeType); const isSheet = SecondaryStructureType.is(v.secStrucType, SecondaryStructureType.Flag.Beta); const isHelix = SecondaryStructureType.is(v.secStrucType, SecondaryStructureType.Flag.Helix); const tension = isHelix && !tubularHelices ? HelixTension : StandardTension; const shift = isNucleicType ? NucleicShift : StandardShift; interpolateCurveSegment(state, v, tension, shift); let w0 = theme.size.size(v.centerPrev) * sizeFactor; let w1 = theme.size.size(v.center) * sizeFactor; let w2 = theme.size.size(v.centerNext) * sizeFactor; if (isCoarse) { w0 *= aspectRatio / 2; w1 *= aspectRatio / 2; w2 *= aspectRatio / 2; } const startCap = v.secStrucFirst || v.coarseBackboneFirst || v.first; const endCap = v.secStrucLast || v.coarseBackboneLast || v.last; let segmentCount = linearSegments; if (v.initial) { segmentCount = Math.max(Math.round(linearSegments * shift), 1); const offset = linearSegments - segmentCount; curvePoints.copyWithin(0, offset * 3); binormalVectors.copyWithin(0, offset * 3); normalVectors.copyWithin(0, offset * 3); Vec3.fromArray(tmpV1, curvePoints, 3); Vec3.normalize(tmpV1, Vec3.sub(tmpV1, v.p2, tmpV1)); Vec3.scaleAndAdd(tmpV1, v.p2, tmpV1, w1 * OverhangFactor); Vec3.toArray(tmpV1, curvePoints, 0); } else if (v.final) { segmentCount = Math.max(Math.round(linearSegments * (1 - shift)), 1); Vec3.fromArray(tmpV1, curvePoints, segmentCount * 3 - 3); Vec3.normalize(tmpV1, Vec3.sub(tmpV1, v.p2, tmpV1)); Vec3.scaleAndAdd(tmpV1, v.p2, tmpV1, w1 * OverhangFactor); Vec3.toArray(tmpV1, curvePoints, segmentCount * 3); } if (v.initial === true && v.final === true) { addSphere(builderState, v.p2, w1 * 2, detail); } else if (isSheet) { const h0 = w0 * aspectRatio; const h1 = w1 * aspectRatio; const h2 = w2 * aspectRatio; const arrowHeight = v.secStrucLast ? h1 * arrowFactor : 0; interpolateSizes(state, w0, w1, w2, h0, h1, h2, shift); if (radialSegments === 2) { addRibbon(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, widthValues, heightValues, arrowHeight); } else { addSheet(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, widthValues, heightValues, arrowHeight, startCap, endCap); } } else { let h0: number, h1: number, h2: number; if (isHelix && !v.isCoarseBackbone) { if (tubularHelices) { w0 *= aspectRatio * 1.5; w1 *= aspectRatio * 1.5; w2 *= aspectRatio * 1.5; h0 = w0; h1 = w1; h2 = w2; } else { h0 = w0 * aspectRatio; h1 = w1 * aspectRatio; h2 = w2 * aspectRatio; } } else if (isNucleicType && !v.isCoarseBackbone) { h0 = w0 * aspectRatio; h1 = w1 * aspectRatio; h2 = w2 * aspectRatio; } else { h0 = w0; h1 = w1; h2 = w2; } interpolateSizes(state, w0, w1, w2, h0, h1, h2, shift); const [normals, binormals] = isNucleicType && !v.isCoarseBackbone ? [binormalVectors, normalVectors] : [normalVectors, binormalVectors]; if (isNucleicType && !v.isCoarseBackbone) { // TODO: find a cleaner way to swap normal and binormal for nucleic types for (let i = 0, il = normals.length; i < il; i++) normals[i] *= -1; } const profile = isNucleicType ? nucleicProfile : helixProfile; if (radialSegments === 2) { if (isNucleicType && !v.isCoarseBackbone) { addRibbon(builderState, curvePoints, normals, binormals, segmentCount, heightValues, widthValues, 0); } else { addRibbon(builderState, curvePoints, normals, binormals, segmentCount, widthValues, heightValues, 0); } } else if (radialSegments === 4) { addSheet(builderState, curvePoints, normals, binormals, segmentCount, widthValues, heightValues, 0, startCap, endCap); } else if (h1 === w1) { addTube(builderState, curvePoints, normals, binormals, segmentCount, radialSegments, widthValues, heightValues, startCap, endCap, 'elliptical'); } else if (profile === 'square') { addSheet(builderState, curvePoints, normals, binormals, segmentCount, widthValues, heightValues, 0, startCap, endCap); } else { addTube(builderState, curvePoints, normals, binormals, segmentCount, radialSegments, widthValues, heightValues, startCap, endCap, profile); } } ++i; } const m = MeshBuilder.getMesh(builderState); const sphere = Sphere3D.expand(Sphere3D(), unit.boundary.sphere, 1 * props.sizeFactor); m.setBoundingSphere(sphere); return m; } export const PolymerTraceParams = { ...UnitsMeshParams, ...PolymerTraceMeshParams }; export type PolymerTraceParams = typeof PolymerTraceParams export function PolymerTraceVisual(materialId: number): UnitsVisual { return UnitsMeshVisual({ defaultProps: PD.getDefaultValues(PolymerTraceParams), createGeometry: createPolymerTraceMesh, createLocationIterator: PolymerLocationIterator.fromGroup, getLoci: getPolymerElementLoci, eachLocation: eachPolymerElement, setUpdateState: (state: VisualUpdateState, newProps: PD.Values, currentProps: PD.Values, newTheme: Theme, currentTheme: Theme, newStructureGroup: StructureGroup, currentStructureGroup: StructureGroup) => { state.createGeometry = ( newProps.sizeFactor !== currentProps.sizeFactor || newProps.tubularHelices !== currentProps.tubularHelices || newProps.detail !== currentProps.detail || newProps.linearSegments !== currentProps.linearSegments || newProps.radialSegments !== currentProps.radialSegments || newProps.aspectRatio !== currentProps.aspectRatio || newProps.arrowFactor !== currentProps.arrowFactor || newProps.helixProfile !== currentProps.helixProfile || newProps.nucleicProfile !== currentProps.nucleicProfile ); const secondaryStructureHash = SecondaryStructureProvider.get(newStructureGroup.structure).version; if ((state.info.secondaryStructureHash as number) !== secondaryStructureHash) { if (state.info.secondaryStructureHash !== undefined) state.createGeometry = true; state.info.secondaryStructureHash = secondaryStructureHash; } } }, materialId); }