/** * Copyright (c) 2018-2020 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose * @author David Sehnal */ import { ValueCell } from '../../../mol-util' import { Vec3, Mat4, Mat3 } from '../../../mol-math/linear-algebra' import { Sphere3D } from '../../../mol-math/geometry' import { transformPositionArray,/* , transformDirectionArray, getNormalMatrix */ transformDirectionArray} from '../../util'; import { GeometryUtils } from '../geometry'; import { createMarkers } from '../marker-data'; import { TransformData } from '../transform-data'; import { LocationIterator } from '../../util/location-iterator'; import { createColors } from '../color-data'; import { ChunkedArray, hashFnv32a } from '../../../mol-data/util'; import { ParamDefinition as PD } from '../../../mol-util/param-definition'; import { calculateInvariantBoundingSphere, calculateTransformBoundingSphere } from '../../../mol-gl/renderable/util'; import { Theme } from '../../../mol-theme/theme'; import { MeshValues } from '../../../mol-gl/renderable/mesh'; import { Color } from '../../../mol-util/color'; import { BaseGeometry } from '../base'; import { createEmptyOverpaint } from '../overpaint-data'; import { createEmptyTransparency } from '../transparency-data'; export interface Mesh { readonly kind: 'mesh', /** Number of vertices in the mesh */ vertexCount: number, /** Number of triangles in the mesh */ triangleCount: number, /** Vertex buffer as array of xyz values wrapped in a value cell */ readonly vertexBuffer: ValueCell, /** Index buffer as array of vertex index triplets wrapped in a value cell */ readonly indexBuffer: ValueCell, /** Normal buffer as array of xyz values for each vertex wrapped in a value cell */ readonly normalBuffer: ValueCell, /** Group buffer as array of group ids for each vertex wrapped in a value cell */ readonly groupBuffer: ValueCell, /** Bounding sphere of the mesh */ readonly boundingSphere: Sphere3D } export namespace Mesh { export function create(vertices: Float32Array, indices: Uint32Array, normals: Float32Array, groups: Float32Array, vertexCount: number, triangleCount: number, mesh?: Mesh): Mesh { return mesh ? update(vertices, indices, normals, groups, vertexCount, triangleCount, mesh) : fromArrays(vertices, indices, normals, groups, vertexCount, triangleCount) } export function createEmpty(mesh?: Mesh): Mesh { const vb = mesh ? mesh.vertexBuffer.ref.value : new Float32Array(0) const ib = mesh ? mesh.indexBuffer.ref.value : new Uint32Array(0) const nb = mesh ? mesh.normalBuffer.ref.value : new Float32Array(0) const gb = mesh ? mesh.groupBuffer.ref.value : new Float32Array(0) return create(vb, ib, nb, gb, 0, 0, mesh) } function hashCode(mesh: Mesh) { return hashFnv32a([ mesh.vertexCount, mesh.triangleCount, mesh.vertexBuffer.ref.version, mesh.indexBuffer.ref.version, mesh.normalBuffer.ref.version, mesh.groupBuffer.ref.version ]) } function fromArrays(vertices: Float32Array, indices: Uint32Array, normals: Float32Array, groups: Float32Array, vertexCount: number, triangleCount: number): Mesh { const boundingSphere = Sphere3D() let currentHash = -1 const mesh = { kind: 'mesh' as const, vertexCount, triangleCount, vertexBuffer: ValueCell.create(vertices), indexBuffer: ValueCell.create(indices), normalBuffer: ValueCell.create(normals), groupBuffer: ValueCell.create(groups), get boundingSphere() { const newHash = hashCode(mesh) if (newHash !== currentHash) { const b = calculateInvariantBoundingSphere(mesh.vertexBuffer.ref.value, mesh.vertexCount, 1) Sphere3D.copy(boundingSphere, b) currentHash = newHash } return boundingSphere }, } return mesh } function update(vertices: Float32Array, indices: Uint32Array, normals: Float32Array, groups: Float32Array, vertexCount: number, triangleCount: number, mesh: Mesh) { mesh.vertexCount = vertexCount mesh.triangleCount = triangleCount ValueCell.update(mesh.vertexBuffer, vertices) ValueCell.update(mesh.indexBuffer, indices) ValueCell.update(mesh.normalBuffer, normals) ValueCell.update(mesh.groupBuffer, groups) return mesh } export function computeNormals(mesh: Mesh) { const normals = mesh.normalBuffer.ref.value.length >= mesh.vertexCount * 3 ? mesh.normalBuffer.ref.value : new Float32Array(mesh.vertexBuffer.ref.value.length); const v = mesh.vertexBuffer.ref.value, triangles = mesh.indexBuffer.ref.value; if (normals === mesh.normalBuffer.ref.value) { for (let i = 0, ii = 3 * mesh.vertexCount; i < ii; i += 3) { normals[i] = 0; normals[i + 1] = 0; normals[i + 2] = 0; } } const x = Vec3.zero(), y = Vec3.zero(), z = Vec3.zero(), d1 = Vec3.zero(), d2 = Vec3.zero(), n = Vec3.zero(); for (let i = 0, ii = 3 * mesh.triangleCount; i < ii; i += 3) { const a = 3 * triangles[i], b = 3 * triangles[i + 1], c = 3 * triangles[i + 2]; Vec3.fromArray(x, v, a); Vec3.fromArray(y, v, b); Vec3.fromArray(z, v, c); Vec3.sub(d1, z, y); Vec3.sub(d2, x, y); Vec3.cross(n, d1, d2); normals[a] += n[0]; normals[a + 1] += n[1]; normals[a + 2] += n[2]; normals[b] += n[0]; normals[b + 1] += n[1]; normals[b + 2] += n[2]; normals[c] += n[0]; normals[c + 1] += n[1]; normals[c + 2] += n[2]; } for (let i = 0, ii = 3 * mesh.vertexCount; i < ii; i += 3) { const nx = normals[i]; const ny = normals[i + 1]; const nz = normals[i + 2]; const f = 1.0 / Math.sqrt(nx * nx + ny * ny + nz * nz); normals[i] *= f; normals[i + 1] *= f; normals[i + 2] *= f; } ValueCell.update(mesh.normalBuffer, normals); } export function checkForDuplicateVertices(mesh: Mesh, fractionDigits = 3) { const v = mesh.vertexBuffer.ref.value const map = new Map() const hash = (v: Vec3, d: number) => `${v[0].toFixed(d)}|${v[1].toFixed(d)}|${v[2].toFixed(d)}` let duplicates = 0 const a = Vec3.zero() for (let i = 0, il = mesh.vertexCount; i < il; ++i) { Vec3.fromArray(a, v, i * 3) const k = hash(a, fractionDigits) const count = map.get(k) if (count !== undefined) { duplicates += 1 map.set(k, count + 1) } else { map.set(k, 1) } } return duplicates } const tmpMat3 = Mat3.zero() export function transform(mesh: Mesh, t: Mat4) { const v = mesh.vertexBuffer.ref.value transformPositionArray(t, v, 0, mesh.vertexCount) if (!Mat4.isTranslationAndUniformScaling(t)) { const n = Mat3.directionTransform(tmpMat3, t) transformDirectionArray(n, mesh.normalBuffer.ref.value, 0, mesh.vertexCount) } ValueCell.update(mesh.vertexBuffer, v); } /** * Ensure that each vertices of each triangle have the same group id. * Note that normals are copied over and can't be re-created from the new mesh. */ export function uniformTriangleGroup(mesh: Mesh, splitTriangles = true) { const { indexBuffer, vertexBuffer, groupBuffer, normalBuffer, triangleCount, vertexCount } = mesh const ib = indexBuffer.ref.value const vb = vertexBuffer.ref.value const gb = groupBuffer.ref.value const nb = normalBuffer.ref.value // new const index = ChunkedArray.create(Uint32Array, 3, 1024, triangleCount) // re-use const vertex = ChunkedArray.create(Float32Array, 3, 1024, vb) vertex.currentIndex = vertexCount * 3 vertex.elementCount = vertexCount const normal = ChunkedArray.create(Float32Array, 3, 1024, nb) normal.currentIndex = vertexCount * 3 normal.elementCount = vertexCount const group = ChunkedArray.create(Float32Array, 1, 1024, gb) group.currentIndex = vertexCount group.elementCount = vertexCount const vi = Vec3.zero() const vj = Vec3.zero() const vk = Vec3.zero() const ni = Vec3.zero() const nj = Vec3.zero() const nk = Vec3.zero() function add(i: number) { Vec3.fromArray(vi, vb, i * 3) Vec3.fromArray(ni, nb, i * 3) ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]) ChunkedArray.add3(normal, ni[0], ni[1], ni[2]) } function addMid(i: number, j: number) { Vec3.fromArray(vi, vb, i * 3) Vec3.fromArray(vj, vb, j * 3) Vec3.scale(vi, Vec3.add(vi, vi, vj), 0.5) Vec3.fromArray(ni, nb, i * 3) Vec3.fromArray(nj, nb, j * 3) Vec3.scale(ni, Vec3.add(ni, ni, nj), 0.5) ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]) ChunkedArray.add3(normal, ni[0], ni[1], ni[2]) } function addCenter(i: number, j: number, k: number) { Vec3.fromArray(vi, vb, i * 3) Vec3.fromArray(vj, vb, j * 3) Vec3.fromArray(vk, vb, k * 3) Vec3.scale(vi, Vec3.add(vi, Vec3.add(vi, vi, vj), vk), 1/3) Vec3.fromArray(ni, nb, i * 3) Vec3.fromArray(nj, nb, j * 3) Vec3.fromArray(nk, nb, k * 3) Vec3.scale(ni, Vec3.add(ni, Vec3.add(ni, ni, nj), nk), 1/3) ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]) ChunkedArray.add3(normal, ni[0], ni[1], ni[2]) } function split2(i0: number, i1: number, i2: number, g0: number, g1: number) { ++newTriangleCount add(i0); addMid(i0, i1); addMid(i0, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 2) for (let j = 0; j < 3; ++j) ChunkedArray.add(group, g0) newVertexCount += 3 newTriangleCount += 2 add(i1); add(i2); addMid(i0, i1); addMid(i0, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3) ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2) for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g1) newVertexCount += 4 } let newVertexCount = vertexCount let newTriangleCount = 0 if (splitTriangles) { for (let i = 0, il = triangleCount; i < il; ++i) { const i0 = ib[i * 3], i1 = ib[i * 3 + 1], i2 = ib[i * 3 + 2] const g0 = gb[i0], g1 = gb[i1], g2 = gb[i2] if (g0 === g1 && g0 === g2) { ++newTriangleCount ChunkedArray.add3(index, i0, i1, i2) } else if (g0 === g1) { split2(i2, i0, i1, g2, g0) } else if (g0 === g2) { split2(i1, i2, i0, g1, g2) } else if (g1 === g2) { split2(i0, i1, i2, g0, g1) } else { newTriangleCount += 2 add(i0); addMid(i0, i1); addMid(i0, i2); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3) ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2) for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g0) newVertexCount += 4 newTriangleCount += 2 add(i1); addMid(i1, i2); addMid(i1, i0); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3) ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2) for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g1) newVertexCount += 4 newTriangleCount += 2 add(i2); addMid(i2, i1); addMid(i2, i0); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount + 3, newVertexCount + 1, newVertexCount) ChunkedArray.add3(index, newVertexCount + 2, newVertexCount + 3, newVertexCount) for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g2) newVertexCount += 4 } } } else { for (let i = 0, il = triangleCount; i < il; ++i) { const i0 = ib[i * 3], i1 = ib[i * 3 + 1], i2 = ib[i * 3 + 2] const g0 = gb[i0], g1 = gb[i1], g2 = gb[i2] if (g0 !== g1 || g0 !== g2) { ++newTriangleCount add(i0); add(i1); add(i2) ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 2) const g = g1 === g2 ? g1 : g0 for (let j = 0; j < 3; ++j) ChunkedArray.add(group, g) newVertexCount += 3 } else { ++newTriangleCount ChunkedArray.add3(index, i0, i1, i2) } } } const newIb = ChunkedArray.compact(index) const newVb = ChunkedArray.compact(vertex) const newNb = ChunkedArray.compact(normal) const newGb = ChunkedArray.compact(group) mesh.vertexCount = newVertexCount mesh.triangleCount = newTriangleCount ValueCell.update(vertexBuffer, newVb) as ValueCell ValueCell.update(groupBuffer, newGb) as ValueCell ValueCell.update(indexBuffer, newIb) as ValueCell ValueCell.update(normalBuffer, newNb) as ValueCell return mesh } // export const Params = { ...BaseGeometry.Params, doubleSided: PD.Boolean(false), flipSided: PD.Boolean(false), flatShaded: PD.Boolean(false), ignoreLight: PD.Boolean(false), } export type Params = typeof Params export const Utils: GeometryUtils = { Params, createEmpty, createValues, createValuesSimple, updateValues, updateBoundingSphere, createRenderableState: BaseGeometry.createRenderableState, updateRenderableState: BaseGeometry.updateRenderableState } function createValues(mesh: Mesh, transform: TransformData, locationIt: LocationIterator, theme: Theme, props: PD.Values): MeshValues { const { instanceCount, groupCount } = locationIt if (instanceCount !== transform.instanceCount.ref.value) { throw new Error('instanceCount values in TransformData and LocationIterator differ') } const color = createColors(locationIt, theme.color) const marker = createMarkers(instanceCount * groupCount) const overpaint = createEmptyOverpaint() const transparency = createEmptyTransparency() const counts = { drawCount: mesh.triangleCount * 3, groupCount, instanceCount } const invariantBoundingSphere = Sphere3D.clone(mesh.boundingSphere) const boundingSphere = calculateTransformBoundingSphere(invariantBoundingSphere, transform.aTransform.ref.value, instanceCount) return { aPosition: mesh.vertexBuffer, aNormal: mesh.normalBuffer, aGroup: mesh.groupBuffer, elements: mesh.indexBuffer, boundingSphere: ValueCell.create(boundingSphere), invariantBoundingSphere: ValueCell.create(invariantBoundingSphere), ...color, ...marker, ...overpaint, ...transparency, ...transform, ...BaseGeometry.createValues(props, counts), dDoubleSided: ValueCell.create(props.doubleSided), dFlatShaded: ValueCell.create(props.flatShaded), dFlipSided: ValueCell.create(props.flipSided), dIgnoreLight: ValueCell.create(props.ignoreLight), } } function createValuesSimple(mesh: Mesh, props: Partial>, colorValue: Color, sizeValue: number, transform?: TransformData) { const s = BaseGeometry.createSimple(colorValue, sizeValue, transform) const p = { ...PD.getDefaultValues(Params), ...props } return createValues(mesh, s.transform, s.locationIterator, s.theme, p) } function updateValues(values: MeshValues, props: PD.Values) { BaseGeometry.updateValues(values, props) ValueCell.updateIfChanged(values.dDoubleSided, props.doubleSided) ValueCell.updateIfChanged(values.dFlatShaded, props.flatShaded) ValueCell.updateIfChanged(values.dFlipSided, props.flipSided) ValueCell.updateIfChanged(values.dIgnoreLight, props.ignoreLight) } function updateBoundingSphere(values: MeshValues, mesh: Mesh) { const invariantBoundingSphere = Sphere3D.clone(mesh.boundingSphere) const boundingSphere = calculateTransformBoundingSphere(invariantBoundingSphere, values.aTransform.ref.value, values.instanceCount.ref.value) if (!Sphere3D.equals(boundingSphere, values.boundingSphere.ref.value)) { ValueCell.update(values.boundingSphere, boundingSphere) } if (!Sphere3D.equals(invariantBoundingSphere, values.invariantBoundingSphere.ref.value)) { ValueCell.update(values.invariantBoundingSphere, invariantBoundingSphere) } } }