/** * Copyright (c) 2017-2020 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal * @author Alexander Rose */ /* * This code has been modified from https://github.com/toji/gl-matrix/, * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: */ import { EPSILON, equalEps } from './common'; import { Vec3 } from './vec3'; import { Quat } from './quat'; import { degToRad } from '../../misc'; import { NumberArray } from '../../../mol-util/type-helpers'; import { Mat3 } from './mat3'; import { Euler } from './euler'; interface Mat4 extends Array { [d: number]: number, '@type': 'mat4', length: 16 } interface ReadonlyMat4 extends Array { readonly [d: number]: number, '@type': 'mat4', length: 16 } function Mat4() { return Mat4.zero(); } /** * Stores a 4x4 matrix in a column major (j * 4 + i indexing) format. */ namespace Mat4 { export function zero(): Mat4 { // force double backing array by 0.1. const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; ret[0] = 0.0; return ret as any; } export function identity(): Mat4 { const out = zero(); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function setIdentity(mat: Mat4): Mat4 { mat[0] = 1; mat[1] = 0; mat[2] = 0; mat[3] = 0; mat[4] = 0; mat[5] = 1; mat[6] = 0; mat[7] = 0; mat[8] = 0; mat[9] = 0; mat[10] = 1; mat[11] = 0; mat[12] = 0; mat[13] = 0; mat[14] = 0; mat[15] = 1; return mat; } export function setZero(mat: Mat4): Mat4 { for (let i = 0; i < 16; i++) mat[i] = 0; return mat; } export function ofRows(rows: number[][]): Mat4 { const out = zero(); for (let i = 0; i < 4; i++) { const r = rows[i]; for (let j = 0; j < 4; j++) { out[4 * j + i] = r[j]; } } return out; } const _id = identity(); export function isIdentity(m: Mat4, eps?: number) { return areEqual(m, _id, typeof eps === 'undefined' ? EPSILON : eps); } export function hasNaN(m: Mat4) { for (let i = 0; i < 16; i++) if (isNaN(m[i])) return true; return false; } export function areEqual(a: Mat4, b: Mat4, eps: number) { for (let i = 0; i < 16; i++) { if (Math.abs(a[i] - b[i]) > eps) return false; } return true; } export function setValue(a: Mat4, i: number, j: number, value: number) { a[4 * j + i] = value; } export function getValue(a: Mat4, i: number, j: number) { return a[4 * j + i]; } export function toArray(a: Mat4, out: T, offset: number) { out[offset + 0] = a[0]; out[offset + 1] = a[1]; out[offset + 2] = a[2]; out[offset + 3] = a[3]; out[offset + 4] = a[4]; out[offset + 5] = a[5]; out[offset + 6] = a[6]; out[offset + 7] = a[7]; out[offset + 8] = a[8]; out[offset + 9] = a[9]; out[offset + 10] = a[10]; out[offset + 11] = a[11]; out[offset + 12] = a[12]; out[offset + 13] = a[13]; out[offset + 14] = a[14]; out[offset + 15] = a[15]; return out; } export function fromArray(a: Mat4, array: NumberArray, offset: number) { a[0] = array[offset + 0]; a[1] = array[offset + 1]; a[2] = array[offset + 2]; a[3] = array[offset + 3]; a[4] = array[offset + 4]; a[5] = array[offset + 5]; a[6] = array[offset + 6]; a[7] = array[offset + 7]; a[8] = array[offset + 8]; a[9] = array[offset + 9]; a[10] = array[offset + 10]; a[11] = array[offset + 11]; a[12] = array[offset + 12]; a[13] = array[offset + 13]; a[14] = array[offset + 14]; a[15] = array[offset + 15]; return a; } export function fromBasis(a: Mat4, x: Vec3, y: Vec3, z: Vec3) { setZero(a); setValue(a, 0, 0, x[0]); setValue(a, 1, 0, x[1]); setValue(a, 2, 0, x[2]); setValue(a, 0, 1, y[0]); setValue(a, 1, 1, y[1]); setValue(a, 2, 1, y[2]); setValue(a, 0, 2, z[0]); setValue(a, 1, 2, z[1]); setValue(a, 2, 2, z[2]); setValue(a, 3, 3, 1); return a; } export function copy(out: Mat4, a: Mat4) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } export function clone(a: Mat4) { return copy(zero(), a); } /** * Returns the translation vector component of a transformation matrix. */ export function getTranslation(out: Vec3, mat: Mat4) { out[0] = mat[12]; out[1] = mat[13]; out[2] = mat[14]; return out; } /** * Returns the scaling factor component of a transformation matrix. */ export function getScaling(out: Vec3, mat: Mat4) { const m11 = mat[0]; const m12 = mat[1]; const m13 = mat[2]; const m21 = mat[4]; const m22 = mat[5]; const m23 = mat[6]; const m31 = mat[8]; const m32 = mat[9]; const m33 = mat[10]; out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13); out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23); out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33); return out; } /** * Returns a quaternion representing the rotational component of a transformation matrix. */ export function getRotation(out: Quat, mat: Mat4) { // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm const trace = mat[0] + mat[5] + mat[10]; let S = 0; if (trace > 0) { S = Math.sqrt(trace + 1.0) * 2; out[3] = 0.25 * S; out[0] = (mat[6] - mat[9]) / S; out[1] = (mat[8] - mat[2]) / S; out[2] = (mat[1] - mat[4]) / S; } else if ((mat[0] > mat[5]) && (mat[0] > mat[10])) { S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2; out[3] = (mat[6] - mat[9]) / S; out[0] = 0.25 * S; out[1] = (mat[1] + mat[4]) / S; out[2] = (mat[8] + mat[2]) / S; } else if (mat[5] > mat[10]) { S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2; out[3] = (mat[8] - mat[2]) / S; out[0] = (mat[1] + mat[4]) / S; out[1] = 0.25 * S; out[2] = (mat[6] + mat[9]) / S; } else { S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2; out[3] = (mat[1] - mat[4]) / S; out[0] = (mat[8] + mat[2]) / S; out[1] = (mat[6] + mat[9]) / S; out[2] = 0.25 * S; } return out; } export function extractRotation(out: Mat4, mat: Mat4) { const scaleX = 1 / Math.sqrt(mat[0] * mat[0] + mat[1] * mat[1] + mat[2] * mat[2]); const scaleY = 1 / Math.sqrt(mat[4] * mat[4] + mat[5] * mat[5] + mat[6] * mat[6]); const scaleZ = 1 / Math.sqrt(mat[8] * mat[8] + mat[9] * mat[9] + mat[10] * mat[10]); out[0] = mat[0] * scaleX; out[1] = mat[1] * scaleX; out[2] = mat[2] * scaleX; out[3] = 0; out[4] = mat[4] * scaleY; out[5] = mat[5] * scaleY; out[6] = mat[6] * scaleY; out[7] = 0; out[8] = mat[8] * scaleZ; out[9] = mat[9] * scaleZ; out[10] = mat[10] * scaleZ; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function transpose(out: Mat4, a: Mat4) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { const a01 = a[1], a02 = a[2], a03 = a[3]; const a12 = a[6], a13 = a[7]; const a23 = a[11]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a01; out[6] = a[9]; out[7] = a[13]; out[8] = a02; out[9] = a12; out[11] = a[14]; out[12] = a03; out[13] = a13; out[14] = a23; } else { out[0] = a[0]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a[1]; out[5] = a[5]; out[6] = a[9]; out[7] = a[13]; out[8] = a[2]; out[9] = a[6]; out[10] = a[10]; out[11] = a[14]; out[12] = a[3]; out[13] = a[7]; out[14] = a[11]; out[15] = a[15]; } return out; } export function tryInvert(out: Mat4, a: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], b00 = a00 * a11 - a01 * a10, b01 = a00 * a12 - a02 * a10, b02 = a00 * a13 - a03 * a10, b03 = a01 * a12 - a02 * a11, b04 = a01 * a13 - a03 * a11, b05 = a02 * a13 - a03 * a12, b06 = a20 * a31 - a21 * a30, b07 = a20 * a32 - a22 * a30, b08 = a20 * a33 - a23 * a30, b09 = a21 * a32 - a22 * a31, b10 = a21 * a33 - a23 * a31, b11 = a22 * a33 - a23 * a32; // Calculate the determinant let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { return false; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; return true; } export function invert(out: Mat4, a: Mat4) { if (!tryInvert(out, a)) { console.warn('non-invertible matrix.', a); } return out; } export function mul(out: Mat4, a: Mat4, b: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; // Cache only the current line of the second matrix let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; return out; } /** * Like `mul` but with offsets into arrays */ export function mulOffset(out: NumberArray, a: NumberArray, b: NumberArray, oOut: number, oA: number, oB: number) { const a00 = a[0 + oA], a01 = a[1 + oA], a02 = a[2 + oA], a03 = a[3 + oA], a10 = a[4 + oA], a11 = a[5 + oA], a12 = a[6 + oA], a13 = a[7 + oA], a20 = a[8 + oA], a21 = a[9 + oA], a22 = a[10 + oA], a23 = a[11 + oA], a30 = a[12 + oA], a31 = a[13 + oA], a32 = a[14 + oA], a33 = a[15 + oA]; // Cache only the current line of the second matrix let b0 = b[0 + oB], b1 = b[1 + oB], b2 = b[2 + oB], b3 = b[3 + oB]; out[0 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[1 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[2 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[3 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[4 + oB]; b1 = b[5 + oB]; b2 = b[6 + oB]; b3 = b[7 + oB]; out[4 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[5 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[6 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[7 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[8 + oB]; b1 = b[9 + oB]; b2 = b[10 + oB]; b3 = b[11 + oB]; out[8 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[9 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[10 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[11 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[12 + oB]; b1 = b[13 + oB]; b2 = b[14 + oB]; b3 = b[15 + oB]; out[12 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[13 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[14 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[15 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; return out; } export function mul3(out: Mat4, a: Mat4, b: Mat4, c: Mat4) { return mul(out, mul(out, a, b), c); } /** Translate a Mat4 by the given Vec3 */ export function translate(out: Mat4, a: Mat4, v: Vec3) { const x = v[0], y = v[1], z = v[2]; let a00: number, a01: number, a02: number, a03: number, a10: number, a11: number, a12: number, a13: number, a20: number, a21: number, a22: number, a23: number; if (a === out) { out[12] = a[0] * x + a[4] * y + a[8] * z + a[12]; out[13] = a[1] * x + a[5] * y + a[9] * z + a[13]; out[14] = a[2] * x + a[6] * y + a[10] * z + a[14]; out[15] = a[3] * x + a[7] * y + a[11] * z + a[15]; } else { a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03; out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13; out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23; out[12] = a00 * x + a10 * y + a20 * z + a[12]; out[13] = a01 * x + a11 * y + a21 * z + a[13]; out[14] = a02 * x + a12 * y + a22 * z + a[14]; out[15] = a03 * x + a13 * y + a23 * z + a[15]; } return out; } export function fromTranslation(out: Mat4, v: Vec3) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } export function setTranslation(out: Mat4, v: Vec3) { out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; return out; } /** * Sets the specified quaternion with values corresponding to the given * axes. Each axis is a vec3 and is expected to be unit length and * perpendicular to all other specified axes. */ export function setAxes(out: Mat4, view: Vec3, right: Vec3, up: Vec3) { out[0] = right[0]; out[4] = right[1]; out[8] = right[2]; out[1] = up[0]; out[5] = up[1]; out[9] = up[2]; out[2] = view[0]; out[6] = view[1]; out[10] = view[2]; return out; } export function rotate(out: Mat4, a: Mat4, rad: number, axis: Vec3) { let x = axis[0], y = axis[1], z = axis[2]; let len = Math.sqrt(x * x + y * y + z * z); if (Math.abs(len) < EPSILON) { return identity(); } len = 1 / len; x *= len; y *= len; z *= len; const s = Math.sin(rad); const c = Math.cos(rad); const t = 1 - c; const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; const a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; const a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; // Construct the elements of the rotation matrix const b00 = x * x * t + c, b01 = y * x * t + z * s, b02 = z * x * t - y * s; const b10 = x * y * t - z * s, b11 = y * y * t + c, b12 = z * y * t + x * s; const b20 = x * z * t + y * s, b21 = y * z * t - x * s, b22 = z * z * t + c; // Perform rotation-specific matrix multiplication out[0] = a00 * b00 + a10 * b01 + a20 * b02; out[1] = a01 * b00 + a11 * b01 + a21 * b02; out[2] = a02 * b00 + a12 * b01 + a22 * b02; out[3] = a03 * b00 + a13 * b01 + a23 * b02; out[4] = a00 * b10 + a10 * b11 + a20 * b12; out[5] = a01 * b10 + a11 * b11 + a21 * b12; out[6] = a02 * b10 + a12 * b11 + a22 * b12; out[7] = a03 * b10 + a13 * b11 + a23 * b12; out[8] = a00 * b20 + a10 * b21 + a20 * b22; out[9] = a01 * b20 + a11 * b21 + a21 * b22; out[10] = a02 * b20 + a12 * b21 + a22 * b22; out[11] = a03 * b20 + a13 * b21 + a23 * b22; if (a !== out) { // If the source and destination differ, copy the unchanged last row out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } return out; } export function fromRotation(out: Mat4, rad: number, axis: Vec3) { let x = axis[0], y = axis[1], z = axis[2]; let len = Math.sqrt(x * x + y * y + z * z); if (Math.abs(len) < EPSILON) { return setIdentity(out); } len = 1 / len; x *= len; y *= len; z *= len; const s = Math.sin(rad); const c = Math.cos(rad); const t = 1 - c; // Perform rotation-specific matrix multiplication out[0] = x * x * t + c; out[1] = y * x * t + z * s; out[2] = z * x * t - y * s; out[3] = 0; out[4] = x * y * t - z * s; out[5] = y * y * t + c; out[6] = z * y * t + x * s; out[7] = 0; out[8] = x * z * t + y * s; out[9] = y * z * t - x * s; out[10] = z * z * t + c; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function scale(out: Mat4, a: Mat4, v: Vec3) { const x = v[0], y = v[1], z = v[2]; out[0] = a[0] * x; out[1] = a[1] * x; out[2] = a[2] * x; out[3] = a[3] * x; out[4] = a[4] * y; out[5] = a[5] * y; out[6] = a[6] * y; out[7] = a[7] * y; out[8] = a[8] * z; out[9] = a[9] * z; out[10] = a[10] * z; out[11] = a[11] * z; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } export function scaleUniformly(out: Mat4, a: Mat4, scale: number) { out[0] = a[0] * scale; out[1] = a[1] * scale; out[2] = a[2] * scale; out[3] = a[3] * scale; out[4] = a[4] * scale; out[5] = a[5] * scale; out[6] = a[6] * scale; out[7] = a[7] * scale; out[8] = a[8] * scale; out[9] = a[9] * scale; out[10] = a[10] * scale; out[11] = a[11] * scale; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } export function fromScaling(out: Mat4, v: Vec3) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = v[1]; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = v[2]; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function fromUniformScaling(out: Mat4, scale: number) { out[0] = scale; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = scale; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = scale; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Copies the mat3 into upper-left 3x3 values. */ export function fromMat3(out: Mat4, a: Mat3) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[4] = a[3]; out[5] = a[4]; out[6] = a[5]; out[8] = a[6]; out[9] = a[7]; out[10] = a[8]; return out; } export function compose(out: Mat4, position: Vec3, quaternion: Quat, scale: Vec3) { const [x, y, z, w] = quaternion; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const [sx, sy, sz] = scale; out[0] = (1 - (yy + zz)) * sx; out[1] = (xy + wz) * sx; out[2] = (xz - wy) * sx; out[3] = 0; out[4] = (xy - wz) * sy; out[5] = (1 - (xx + zz)) * sy; out[6] = (yz + wx) * sy; out[7] = 0; out[8] = (xz + wy) * sz; out[9] = (yz - wx) * sz; out[10] = (1 - (xx + yy)) * sz; out[11] = 0; out[12] = position[0]; out[13] = position[1]; out[14] = position[2]; out[15] = 1; return out; } const _v3 = [0, 0, 0] as unknown as Vec3; const _m4 = zero(); export function decompose(m: Mat4, position: Vec3, quaternion: Quat, scale: Vec3) { let sx = Vec3.magnitude(Vec3.set(_v3, m[0], m[1], m[2])); const sy = Vec3.magnitude(Vec3.set(_v3, m[4], m[5], m[6])); const sz = Vec3.magnitude(Vec3.set(_v3, m[8], m[9], m[10])); // if determine is negative, we need to invert one scale const det = determinant(m); if (det < 0) sx = -sx; position[0] = m[12]; position[1] = m[13]; position[2] = m[14]; // scale the rotation part copy(_m4, m); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m4[0] *= invSX; _m4[1] *= invSX; _m4[2] *= invSX; _m4[4] *= invSY; _m4[5] *= invSY; _m4[6] *= invSY; _m4[8] *= invSZ; _m4[9] *= invSZ; _m4[10] *= invSZ; getRotation(quaternion, _m4); scale[0] = sx; scale[1] = sy; scale[2] = sz; return m; } export function makeTable(m: Mat4) { let ret = ''; for (let i = 0; i < 4; i++) { for (let j = 0; j < 4; j++) { ret += m[4 * j + i].toString(); if (j < 3) ret += ' '; } if (i < 3) ret += '\n'; } return ret; } export function determinant(a: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], b00 = a00 * a11 - a01 * a10, b01 = a00 * a12 - a02 * a10, b02 = a00 * a13 - a03 * a10, b03 = a01 * a12 - a02 * a11, b04 = a01 * a13 - a03 * a11, b05 = a02 * a13 - a03 * a12, b06 = a20 * a31 - a21 * a30, b07 = a20 * a32 - a22 * a30, b08 = a20 * a33 - a23 * a30, b09 = a21 * a32 - a22 * a31, b10 = a21 * a33 - a23 * a31, b11 = a22 * a33 - a23 * a32; // Calculate the determinant return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; } /** * Check if the matrix has the form * [ Rotation Translation ] * [ 0 1 ] * * Allows for improper rotations */ export function isRotationAndTranslation(a: Mat4, eps?: number) { return _isRotationAndTranslation(a, typeof eps !== 'undefined' ? eps : EPSILON); } function _isRotationAndTranslation(a: Mat4, eps: number) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a33 = a[15]; if (!equalEps(a33, 1, eps) || !equalEps(a03, 0, eps) || !equalEps(a13, 0, eps) || !equalEps(a23, 0, eps)) { return false; } // use `abs` to allow for improper rotations const det3x3 = Math.abs(a00 * (a11 * a22 - a12 * a21) - a01 * (a10 * a22 - a12 * a20) + a02 * (a10 * a21 - a11 * a20)); if (!equalEps(det3x3, 1, eps)) { return false; } return true; } /** * Check if the matrix has only translation and uniform scaling * [ S 0 0 X ] * [ 0 S 0 Y ] * [ 0 0 S Z ] * [ 0 0 0 1 ] */ export function isTranslationAndUniformScaling(a: Mat4, eps?: number) { return _isTranslationAndUniformScaling(a, typeof eps !== 'undefined' ? eps : EPSILON); } function _isTranslationAndUniformScaling(a: Mat4, eps: number) { const a00 = a[0]; return ( // 0 base scaling equalEps(a[1], 0, eps) && equalEps(a[2], 0, eps) && equalEps(a[3], 0, eps) && equalEps(a[4], 0, eps) && equalEps(a[5], a00, eps) && equalEps(a[6], 0, eps) && equalEps(a[7], 0, eps) && equalEps(a[8], 0, eps) && equalEps(a[9], 0, eps) && equalEps(a[10], a00, eps) && equalEps(a[11], 0, eps) && // 12, 13, 14 translation can be anything equalEps(a[15], 1, eps) ); } export function fromQuat(out: Mat4, q: Quat) { const x = q[0], y = q[1], z = q[2], w = q[3]; const x2 = x + x; const y2 = y + y; const z2 = z + z; const xx = x * x2; const yx = y * x2; const yy = y * y2; const zx = z * x2; const zy = z * y2; const zz = z * z2; const wx = w * x2; const wy = w * y2; const wz = w * z2; out[0] = 1 - yy - zz; out[1] = yx + wz; out[2] = zx - wy; out[3] = 0; out[4] = yx - wz; out[5] = 1 - xx - zz; out[6] = zy + wx; out[7] = 0; out[8] = zx + wy; out[9] = zy - wx; out[10] = 1 - xx - yy; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function fromEuler(out: Mat4, euler: Euler, order: Euler.Order) { const x = euler[0], y = euler[1], z = euler[2]; const a = Math.cos(x), b = Math.sin(x); const c = Math.cos(y), d = Math.sin(y); const e = Math.cos(z), f = Math.sin(z); if (order === 'XYZ') { const ae = a * e, af = a * f, be = b * e, bf = b * f; out[0] = c * e; out[4] = - c * f; out[8] = d; out[1] = af + be * d; out[5] = ae - bf * d; out[9] = - b * c; out[2] = bf - ae * d; out[6] = be + af * d; out[10] = a * c; } else if (order === 'YXZ') { const ce = c * e, cf = c * f, de = d * e, df = d * f; out[0] = ce + df * b; out[4] = de * b - cf; out[8] = a * d; out[1] = a * f; out[5] = a * e; out[9] = - b; out[2] = cf * b - de; out[6] = df + ce * b; out[10] = a * c; } else if (order === 'ZXY') { const ce = c * e, cf = c * f, de = d * e, df = d * f; out[0] = ce - df * b; out[4] = - a * f; out[8] = de + cf * b; out[1] = cf + de * b; out[5] = a * e; out[9] = df - ce * b; out[2] = - a * d; out[6] = b; out[10] = a * c; } else if (order === 'ZYX') { const ae = a * e, af = a * f, be = b * e, bf = b * f; out[0] = c * e; out[4] = be * d - af; out[8] = ae * d + bf; out[1] = c * f; out[5] = bf * d + ae; out[9] = af * d - be; out[2] = - d; out[6] = b * c; out[10] = a * c; } else if (order === 'YZX') { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; out[0] = c * e; out[4] = bd - ac * f; out[8] = bc * f + ad; out[1] = f; out[5] = a * e; out[9] = - b * e; out[2] = - d * e; out[6] = ad * f + bc; out[10] = ac - bd * f; } else if (order === 'XZY') { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; out[0] = c * e; out[4] = - f; out[8] = d * e; out[1] = ac * f + bd; out[5] = a * e; out[9] = ad * f - bc; out[2] = bc * f - ad; out[6] = b * e; out[10] = bd * f + ac; } // bottom row out[3] = 0; out[7] = 0; out[11] = 0; // last column out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Generates a perspective projection (frustum) matrix with the given bounds */ export function perspective(out: Mat4, left: number, right: number, top: number, bottom: number, near: number, far: number) { const x = 2 * near / (right - left); const y = 2 * near / (top - bottom); const a = (right + left) / (right - left); const b = (top + bottom) / (top - bottom); const c = -(far + near) / (far - near); const d = -2 * far * near / (far - near); out[0] = x; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = y; out[6] = 0; out[7] = 0; out[8] = a; out[9] = b; out[10] = c; out[11] = -1; out[12] = 0; out[13] = 0; out[14] = d; out[15] = 0; return out; } /** * Generates a orthogonal projection matrix with the given bounds */ export function ortho(out: Mat4, left: number, right: number, top: number, bottom: number, near: number, far: number) { const w = 1.0 / (right - left); const h = 1.0 / (top - bottom); const p = 1.0 / (far - near); const x = (right + left) * w; const y = (top + bottom) * h; const z = (far + near) * p; out[0] = 2 * w; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 2 * h; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = -2 * p; out[11] = 0; out[12] = -x; out[13] = -y; out[14] = -z; out[15] = 1; return out; } /** * Generates a look-at matrix with the given eye position, focal point, and up axis */ export function lookAt(out: Mat4, eye: Vec3, center: Vec3, up: Vec3) { let x0, x1, x2, y0, y1, y2, z0, z1, z2, len; const eyex = eye[0]; const eyey = eye[1]; const eyez = eye[2]; const upx = up[0]; const upy = up[1]; const upz = up[2]; const centerx = center[0]; const centery = center[1]; const centerz = center[2]; if (Math.abs(eyex - centerx) < EPSILON && Math.abs(eyey - centery) < EPSILON && Math.abs(eyez - centerz) < EPSILON ) { return setIdentity(out); } z0 = eyex - centerx; z1 = eyey - centery; z2 = eyez - centerz; len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); z0 *= len; z1 *= len; z2 *= len; x0 = upy * z2 - upz * z1; x1 = upz * z0 - upx * z2; x2 = upx * z1 - upy * z0; len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); if (!len) { x0 = 0; x1 = 0; x2 = 0; } else { len = 1 / len; x0 *= len; x1 *= len; x2 *= len; } y0 = z1 * x2 - z2 * x1; y1 = z2 * x0 - z0 * x2; y2 = z0 * x1 - z1 * x0; len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); if (!len) { y0 = 0; y1 = 0; y2 = 0; } else { len = 1 / len; y0 *= len; y1 *= len; y2 *= len; } out[0] = x0; out[1] = y0; out[2] = z0; out[3] = 0; out[4] = x1; out[5] = y1; out[6] = z1; out[7] = 0; out[8] = x2; out[9] = y2; out[10] = z2; out[11] = 0; out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); out[15] = 1; return out; } /** * Generates a matrix that makes something look at something else. */ export function targetTo(out: Mat4, eye: Vec3, target: Vec3, up: Vec3) { const eyex = eye[0], eyey = eye[1], eyez = eye[2], upx = up[0], upy = up[1], upz = up[2]; let z0 = eyex - target[0], z1 = eyey - target[1], z2 = eyez - target[2]; let len = z0 * z0 + z1 * z1 + z2 * z2; if (len > 0) { len = 1 / Math.sqrt(len); z0 *= len; z1 *= len; z2 *= len; } let x0 = upy * z2 - upz * z1, x1 = upz * z0 - upx * z2, x2 = upx * z1 - upy * z0; len = x0 * x0 + x1 * x1 + x2 * x2; if (len > 0) { len = 1 / Math.sqrt(len); x0 *= len; x1 *= len; x2 *= len; } out[0] = x0; out[1] = x1; out[2] = x2; out[3] = 0; out[4] = z1 * x2 - z2 * x1; out[5] = z2 * x0 - z0 * x2; out[6] = z0 * x1 - z1 * x0; out[7] = 0; out[8] = z0; out[9] = z1; out[10] = z2; out[11] = 0; out[12] = eyex; out[13] = eyey; out[14] = eyez; out[15] = 1; return out; } /** * Perm is 0-indexed permutation */ export function fromPermutation(out: Mat4, perm: number[]) { setZero(out); for (let i = 0; i < 4; i++) { const p = perm[i]; setValue(out, i, p, 1); } return out; } export function getMaxScaleOnAxis(m: Mat4) { const scaleXSq = m[0] * m[0] + m[1] * m[1] + m[2] * m[2]; const scaleYSq = m[4] * m[4] + m[5] * m[5] + m[6] * m[6]; const scaleZSq = m[8] * m[8] + m[9] * m[9] + m[10] * m[10]; return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)); } const xAxis = [1, 0, 0] as unknown as Vec3; const yAxis = [0, 1, 0] as unknown as Vec3; const zAxis = [0, 0, 1] as unknown as Vec3; /** Rotation matrix for 90deg around x-axis */ export const rotX90: ReadonlyMat4 = fromRotation(zero(), degToRad(90), xAxis); /** Rotation matrix for 180deg around x-axis */ export const rotX180: ReadonlyMat4 = fromRotation(zero(), degToRad(180), xAxis); /** Rotation matrix for 90deg around y-axis */ export const rotY90: ReadonlyMat4 = fromRotation(zero(), degToRad(90), yAxis); /** Rotation matrix for 180deg around y-axis */ export const rotY180: ReadonlyMat4 = fromRotation(zero(), degToRad(180), yAxis); /** Rotation matrix for 270deg around y-axis */ export const rotY270: ReadonlyMat4 = fromRotation(zero(), degToRad(270), yAxis); /** Rotation matrix for 90deg around z-axis */ export const rotZ90: ReadonlyMat4 = fromRotation(zero(), degToRad(90), zAxis); /** Rotation matrix for 180deg around z-axis */ export const rotZ180: ReadonlyMat4 = fromRotation(zero(), degToRad(180), zAxis); /** Rotation matrix for 90deg around first x-axis and then y-axis */ export const rotXY90: ReadonlyMat4 = mul(zero(), rotX90, rotY90); /** Rotation matrix for 90deg around first z-axis and then y-axis */ export const rotZY90: ReadonlyMat4 = mul(zero(), rotZ90, rotY90); /** Rotation matrix for 90deg around first z-axis and then y-axis and then z-axis */ export const rotZYZ90: ReadonlyMat4 = mul(zero(), rotZY90, rotZ90); /** Rotation matrix for 90deg around first z-axis and then 180deg around x-axis */ export const rotZ90X180: ReadonlyMat4 = mul(zero(), rotZ90, rotX180); /** Rotation matrix for 90deg around first y-axis and then 180deg around z-axis */ export const rotY90Z180: ReadonlyMat4 = mul(zero(), rotY90, rotZ180); /** Identity matrix */ export const id: ReadonlyMat4 = identity(); } export { Mat4 };