/** * Copyright (c) 2017 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal * @author Alexander Rose */ /* * This code has been modified from https://github.com/toji/gl-matrix/, * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: */ export interface Mat4 extends Array { [d: number]: number, '@type': 'mat4', length: 16 } export interface Mat3 extends Array { [d: number]: number, '@type': 'mat3', length: 9 } export interface Vec3 extends Array { [d: number]: number, '@type': 'vec3', length: 3 } export interface Vec4 extends Array { [d: number]: number, '@type': 'vec4', length: 4 } export interface Quat extends Array { [d: number]: number, '@type': 'quat', length: 4 } const enum EPSILON { Value = 0.000001 } export function Mat4() { return Mat4.zero(); } export function Quat() { return Quat.zero(); } /** * Stores a 4x4 matrix in a column major (j * 4 + i indexing) format. */ export namespace Mat4 { export function zero(): Mat4 { // force double backing array by 0.1. const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; ret[0] = 0.0; return ret as any; } export function identity(): Mat4 { const out = zero(); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function setIdentity(mat: Mat4): Mat4 { mat[0] = 1; mat[1] = 0; mat[2] = 0; mat[3] = 0; mat[4] = 0; mat[5] = 1; mat[6] = 0; mat[7] = 0; mat[8] = 0; mat[9] = 0; mat[10] = 1; mat[11] = 0; mat[12] = 0; mat[13] = 0; mat[14] = 0; mat[15] = 1; return mat; } export function ofRows(rows: number[][]): Mat4 { const out = zero(); for (let i = 0; i < 4; i++) { const r = rows[i]; for (let j = 0; j < 4; j++) { out[4 * j + i] = r[j]; } } return out; } const _id = identity(); export function isIdentity(m: Mat4, eps?: number) { return areEqual(m, _id, typeof eps === 'undefined' ? EPSILON.Value : eps); } export function areEqual(a: Mat4, b: Mat4, eps: number) { for (let i = 0; i < 16; i++) { if (Math.abs(a[i] - b[i]) > eps) return false; } return true; } export function setValue(a: Mat4, i: number, j: number, value: number) { a[4 * j + i] = value; } export function toArray(a: Mat4, out: Helpers.NumberArray, offset: number) { out[offset + 0] = a[0]; out[offset + 1] = a[1]; out[offset + 2] = a[2]; out[offset + 3] = a[3]; out[offset + 4] = a[4]; out[offset + 5] = a[5]; out[offset + 6] = a[6]; out[offset + 7] = a[7]; out[offset + 8] = a[8]; out[offset + 9] = a[9]; out[offset + 10] = a[10]; out[offset + 11] = a[11]; out[offset + 12] = a[12]; out[offset + 13] = a[13]; out[offset + 14] = a[14]; out[offset + 15] = a[15]; } export function fromArray(a: Mat4, array: Helpers.NumberArray, offset: number) { a[0] = array[offset + 0] a[1] = array[offset + 1] a[2] = array[offset + 2] a[3] = array[offset + 3] a[4] = array[offset + 4] a[5] = array[offset + 5] a[6] = array[offset + 6] a[7] = array[offset + 7] a[8] = array[offset + 8] a[9] = array[offset + 9] a[10] = array[offset + 10] a[11] = array[offset + 11] a[12] = array[offset + 12] a[13] = array[offset + 13] a[14] = array[offset + 14] a[15] = array[offset + 15] } export function copy(out: Mat4, a: Mat4) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } export function clone(a: Mat4) { return Mat4.copy(Mat4.zero(), a); } export function transpose(out: Mat4, a: Mat4) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { const a01 = a[1], a02 = a[2], a03 = a[3]; const a12 = a[6], a13 = a[7]; const a23 = a[11]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a01; out[6] = a[9]; out[7] = a[13]; out[8] = a02; out[9] = a12; out[11] = a[14]; out[12] = a03; out[13] = a13; out[14] = a23; } else { out[0] = a[0]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a[1]; out[5] = a[5]; out[6] = a[9]; out[7] = a[13]; out[8] = a[2]; out[9] = a[6]; out[10] = a[10]; out[11] = a[14]; out[12] = a[3]; out[13] = a[7]; out[14] = a[11]; out[15] = a[15]; } return out; } export function invert(out: Mat4, a: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], b00 = a00 * a11 - a01 * a10, b01 = a00 * a12 - a02 * a10, b02 = a00 * a13 - a03 * a10, b03 = a01 * a12 - a02 * a11, b04 = a01 * a13 - a03 * a11, b05 = a02 * a13 - a03 * a12, b06 = a20 * a31 - a21 * a30, b07 = a20 * a32 - a22 * a30, b08 = a20 * a33 - a23 * a30, b09 = a21 * a32 - a22 * a31, b10 = a21 * a33 - a23 * a31, b11 = a22 * a33 - a23 * a32; // Calculate the determinant let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { console.warn('non-invertible matrix.', a); return out; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; return out; } export function mul(out: Mat4, a: Mat4, b: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; // Cache only the current line of the second matrix let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; return out; } export function mul3(out: Mat4, a: Mat4, b: Mat4, c: Mat4) { return mul(out, mul(out, a, b), c); } export function translate(out: Mat4, a: Mat4, v: Vec3) { const x = v[0], y = v[1], z = v[2]; let a00: number, a01: number, a02: number, a03: number, a10: number, a11: number, a12: number, a13: number, a20: number, a21: number, a22: number, a23: number; if (a === out) { out[12] = a[0] * x + a[4] * y + a[8] * z + a[12]; out[13] = a[1] * x + a[5] * y + a[9] * z + a[13]; out[14] = a[2] * x + a[6] * y + a[10] * z + a[14]; out[15] = a[3] * x + a[7] * y + a[11] * z + a[15]; } else { a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03; out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13; out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23; out[12] = a00 * x + a10 * y + a20 * z + a[12]; out[13] = a01 * x + a11 * y + a21 * z + a[13]; out[14] = a02 * x + a12 * y + a22 * z + a[14]; out[15] = a03 * x + a13 * y + a23 * z + a[15]; } return out; } export function fromTranslation(out: Mat4, v: Vec3) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } export function setTranslation(out: Mat4, v: Vec3) { out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; return out; } export function rotate(out: Mat4, a: Mat4, rad: number, axis: Mat4) { let x = axis[0], y = axis[1], z = axis[2], len = Math.sqrt(x * x + y * y + z * z), s, c, t, a00, a01, a02, a03, a10, a11, a12, a13, a20, a21, a22, a23, b00, b01, b02, b10, b11, b12, b20, b21, b22; if (Math.abs(len) < EPSILON.Value) { return Mat4.identity(); } len = 1 / len; x *= len; y *= len; z *= len; s = Math.sin(rad); c = Math.cos(rad); t = 1 - c; a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; // Construct the elements of the rotation matrix b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s; b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s; b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c; // Perform rotation-specific matrix multiplication out[0] = a00 * b00 + a10 * b01 + a20 * b02; out[1] = a01 * b00 + a11 * b01 + a21 * b02; out[2] = a02 * b00 + a12 * b01 + a22 * b02; out[3] = a03 * b00 + a13 * b01 + a23 * b02; out[4] = a00 * b10 + a10 * b11 + a20 * b12; out[5] = a01 * b10 + a11 * b11 + a21 * b12; out[6] = a02 * b10 + a12 * b11 + a22 * b12; out[7] = a03 * b10 + a13 * b11 + a23 * b12; out[8] = a00 * b20 + a10 * b21 + a20 * b22; out[9] = a01 * b20 + a11 * b21 + a21 * b22; out[10] = a02 * b20 + a12 * b21 + a22 * b22; out[11] = a03 * b20 + a13 * b21 + a23 * b22; if (a !== out) { // If the source and destination differ, copy the unchanged last row out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } return out; } export function fromRotation(out: Mat4, rad: number, axis: Vec3) { let x = axis[0], y = axis[1], z = axis[2], len = Math.sqrt(x * x + y * y + z * z), s, c, t; if (Math.abs(len) < EPSILON.Value) { return setIdentity(out); } len = 1 / len; x *= len; y *= len; z *= len; s = Math.sin(rad); c = Math.cos(rad); t = 1 - c; // Perform rotation-specific matrix multiplication out[0] = x * x * t + c; out[1] = y * x * t + z * s; out[2] = z * x * t - y * s; out[3] = 0; out[4] = x * y * t - z * s; out[5] = y * y * t + c; out[6] = z * y * t + x * s; out[7] = 0; out[8] = x * z * t + y * s; out[9] = y * z * t - x * s; out[10] = z * z * t + c; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function scale(out: Mat4, a: Mat4, v: Vec3) { const x = v[0], y = v[1], z = v[2]; out[0] = a[0] * x; out[1] = a[1] * x; out[2] = a[2] * x; out[3] = a[3] * x; out[4] = a[4] * y; out[5] = a[5] * y; out[6] = a[6] * y; out[7] = a[7] * y; out[8] = a[8] * z; out[9] = a[9] * z; out[10] = a[10] * z; out[11] = a[11] * z; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } export function fromScaling(out: Mat4, v: Vec3) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = v[1]; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = v[2]; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function makeTable(m: Mat4) { let ret = ''; for (let i = 0; i < 4; i++) { for (let j = 0; j < 4; j++) { ret += m[4 * j + i].toString(); if (j < 3) ret += ' '; } if (i < 3) ret += '\n'; } return ret; } export function determinant(a: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], b00 = a00 * a11 - a01 * a10, b01 = a00 * a12 - a02 * a10, b02 = a00 * a13 - a03 * a10, b03 = a01 * a12 - a02 * a11, b04 = a01 * a13 - a03 * a11, b05 = a02 * a13 - a03 * a12, b06 = a20 * a31 - a21 * a30, b07 = a20 * a32 - a22 * a30, b08 = a20 * a33 - a23 * a30, b09 = a21 * a32 - a22 * a31, b10 = a21 * a33 - a23 * a31, b11 = a22 * a33 - a23 * a32; // Calculate the determinant return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; } /** * Check if the matrix has the form * [ Rotation Translation ] * [ 0 1 ] */ export function isRotationAndTranslation(a: Mat4, eps?: number) { return _isRotationAndTranslation(a, typeof eps !== 'undefined' ? eps : EPSILON.Value) } function _isRotationAndTranslation(a: Mat4, eps: number) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], /* a30 = a[12], a31 = a[13], a32 = a[14],*/ a33 = a[15]; if (a33 !== 1 || a03 !== 0 || a13 !== 0 || a23 !== 0) { return false; } const det3x3 = a00 * (a11 * a22 - a12 * a21) - a01 * (a10 * a22 - a12 * a20) + a02 * (a10 * a21 - a11 * a20); if (det3x3 < 1 - eps || det3x3 > 1 + eps) { return false; } return true; } export function fromQuat(out: Mat4, q: Quat) { const x = q[0], y = q[1], z = q[2], w = q[3]; const x2 = x + x; const y2 = y + y; const z2 = z + z; const xx = x * x2; const yx = y * x2; const yy = y * y2; const zx = z * x2; const zy = z * y2; const zz = z * z2; const wx = w * x2; const wy = w * y2; const wz = w * z2; out[0] = 1 - yy - zz; out[1] = yx + wz; out[2] = zx - wy; out[3] = 0; out[4] = yx - wz; out[5] = 1 - xx - zz; out[6] = zy + wx; out[7] = 0; out[8] = zx + wy; out[9] = zy - wx; out[10] = 1 - xx - yy; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Generates a frustum matrix with the given bounds */ export function frustum(out: Mat4, left: number, right: number, bottom: number, top: number, near: number, far: number) { let rl = 1 / (right - left); let tb = 1 / (top - bottom); let nf = 1 / (near - far); out[0] = (near * 2) * rl; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = (near * 2) * tb; out[6] = 0; out[7] = 0; out[8] = (right + left) * rl; out[9] = (top + bottom) * tb; out[10] = (far + near) * nf; out[11] = -1; out[12] = 0; out[13] = 0; out[14] = (far * near * 2) * nf; out[15] = 0; return out; } /** * Generates a perspective projection matrix with the given bounds */ export function perspective(out: Mat4, fovy: number, aspect: number, near: number, far: number) { let f = 1.0 / Math.tan(fovy / 2); let nf = 1 / (near - far); out[0] = f / aspect; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = f; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = (far + near) * nf; out[11] = -1; out[12] = 0; out[13] = 0; out[14] = (2 * far * near) * nf; out[15] = 0; return out; } /** * Generates a orthogonal projection matrix with the given bounds */ export function ortho(out: Mat4, left: number, right: number, bottom: number, top: number, near: number, far: number) { let lr = 1 / (left - right); let bt = 1 / (bottom - top); let nf = 1 / (near - far); out[0] = -2 * lr; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = -2 * bt; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 2 * nf; out[11] = 0; out[12] = (left + right) * lr; out[13] = (top + bottom) * bt; out[14] = (far + near) * nf; out[15] = 1; return out; } /** * Generates a look-at matrix with the given eye position, focal point, and up axis */ export function lookAt(out: Mat4, eye: Vec3, center: Vec3, up: Vec3) { let x0, x1, x2, y0, y1, y2, z0, z1, z2, len; let eyex = eye[0]; let eyey = eye[1]; let eyez = eye[2]; let upx = up[0]; let upy = up[1]; let upz = up[2]; let centerx = center[0]; let centery = center[1]; let centerz = center[2]; if (Math.abs(eyex - centerx) < EPSILON.Value && Math.abs(eyey - centery) < EPSILON.Value && Math.abs(eyez - centerz) < EPSILON.Value ) { return setIdentity(out); } z0 = eyex - centerx; z1 = eyey - centery; z2 = eyez - centerz; len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); z0 *= len; z1 *= len; z2 *= len; x0 = upy * z2 - upz * z1; x1 = upz * z0 - upx * z2; x2 = upx * z1 - upy * z0; len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); if (!len) { x0 = 0; x1 = 0; x2 = 0; } else { len = 1 / len; x0 *= len; x1 *= len; x2 *= len; } y0 = z1 * x2 - z2 * x1; y1 = z2 * x0 - z0 * x2; y2 = z0 * x1 - z1 * x0; len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); if (!len) { y0 = 0; y1 = 0; y2 = 0; } else { len = 1 / len; y0 *= len; y1 *= len; y2 *= len; } out[0] = x0; out[1] = y0; out[2] = z0; out[3] = 0; out[4] = x1; out[5] = y1; out[6] = z1; out[7] = 0; out[8] = x2; out[9] = y2; out[10] = z2; out[11] = 0; out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); out[15] = 1; return out; } } export namespace Mat3 { export function zero(): Mat3 { // force double backing array by 0.1. const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0]; ret[0] = 0.0; return ret as any; } } export namespace Vec3 { export function zero(): Vec3 { const out = [0.1, 0.0, 0.0]; out[0] = 0; return out as any; } export function clone(a: Vec3): Vec3 { const out = zero(); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; return out; } export function fromObj(v: { x: number, y: number, z: number }): Vec3 { return create(v.x, v.y, v.z); } export function toObj(v: Vec3) { return { x: v[0], y: v[1], z: v[2] }; } export function fromArray(v: Vec3, array: Helpers.NumberArray, offset: number) { v[0] = array[offset + 0] v[1] = array[offset + 1] v[2] = array[offset + 2] } export function toArray(v: Vec3, out: Helpers.NumberArray, offset: number) { out[offset + 0] = v[0] out[offset + 1] = v[1] out[offset + 2] = v[2] } export function create(x: number, y: number, z: number): Vec3 { const out = zero(); out[0] = x; out[1] = y; out[2] = z; return out; } export function set(out: Vec3, x: number, y: number, z: number): Vec3 { out[0] = x; out[1] = y; out[2] = z; return out; } export function copy(out: Vec3, a: Vec3) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; return out; } export function add(out: Vec3, a: Vec3, b: Vec3) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; return out; } export function sub(out: Vec3, a: Vec3, b: Vec3) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; return out; } export function scale(out: Vec3, a: Vec3, b: number) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; return out; } export function scaleAndAdd(out: Vec3, a: Vec3, b: Vec3, scale: number) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); out[2] = a[2] + (b[2] * scale); return out; } export function distance(a: Vec3, b: Vec3) { const x = b[0] - a[0], y = b[1] - a[1], z = b[2] - a[2]; return Math.sqrt(x * x + y * y + z * z); } export function squaredDistance(a: Vec3, b: Vec3) { const x = b[0] - a[0], y = b[1] - a[1], z = b[2] - a[2]; return x * x + y * y + z * z; } export function magnitude(a: Vec3) { const x = a[0], y = a[1], z = a[2]; return Math.sqrt(x * x + y * y + z * z); } export function squaredMagnitude(a: Vec3) { const x = a[0], y = a[1], z = a[2]; return x * x + y * y + z * z; } export function normalize(out: Vec3, a: Vec3) { const x = a[0], y = a[1], z = a[2]; let len = x * x + y * y + z * z; if (len > 0) { len = 1 / Math.sqrt(len); out[0] = a[0] * len; out[1] = a[1] * len; out[2] = a[2] * len; } return out; } export function dot(a: Vec3, b: Vec3) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } export function cross(out: Vec3, a: Vec3, b: Vec3) { const ax = a[0], ay = a[1], az = a[2], bx = b[0], by = b[1], bz = b[2]; out[0] = ay * bz - az * by; out[1] = az * bx - ax * bz; out[2] = ax * by - ay * bx; return out; } export function lerp(out: Vec3, a: Vec3, b: Vec3, t: number) { const ax = a[0], ay = a[1], az = a[2]; out[0] = ax + t * (b[0] - ax); out[1] = ay + t * (b[1] - ay); out[2] = az + t * (b[2] - az); return out; } export function transformMat4(out: Vec3, a: Vec3, m: Mat4) { const x = a[0], y = a[1], z = a[2], w = (m[3] * x + m[7] * y + m[11] * z + m[15]) || 1.0; out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w; out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w; out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w; return out; } const angleTempA = zero(), angleTempB = zero(); export function angle(a: Vec3, b: Vec3) { copy(angleTempA, a); copy(angleTempB, b); normalize(angleTempA, angleTempA); normalize(angleTempB, angleTempB); const cosine = dot(angleTempA, angleTempB); if (cosine > 1.0) { return 0; } else if (cosine < -1.0) { return Math.PI; } else { return Math.acos(cosine); } } const rotTemp = zero(); export function makeRotation(mat: Mat4, a: Vec3, b: Vec3): Mat4 { const by = angle(a, b); if (Math.abs(by) < 0.0001) return Mat4.setIdentity(mat); const axis = cross(rotTemp, a, b); return Mat4.fromRotation(mat, by, axis); } } export namespace Vec4 { export function zero(): Vec4 { // force double backing array by 0.1. const ret = [0.1, 0, 0, 0]; ret[0] = 0.0; return ret as any; } export function clone(a: Vec4) { const out = zero(); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } export function create(x: number, y: number, z: number, w: number) { const out = zero(); out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } export function copy(out: Vec4, a: Vec4) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } export function set(out: Vec4, x: number, y: number, z: number, w: number) { out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } export function add(out: Quat, a: Quat, b: Quat) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; return out; } export function distance(a: Vec4, b: Vec4) { const x = b[0] - a[0], y = b[1] - a[1], z = b[2] - a[2], w = b[3] - a[3]; return Math.sqrt(x * x + y * y + z * z + w * w); } export function squaredDistance(a: Vec4, b: Vec4) { const x = b[0] - a[0], y = b[1] - a[1], z = b[2] - a[2], w = b[3] - a[3]; return x * x + y * y + z * z + w * w; } export function norm(a: Vec4) { const x = a[0], y = a[1], z = a[2], w = a[3]; return Math.sqrt(x * x + y * y + z * z + w * w); } export function squaredNorm(a: Vec4) { const x = a[0], y = a[1], z = a[2], w = a[3]; return x * x + y * y + z * z + w * w; } export function transform(out: Vec4, a: Vec4, m: Mat4) { const x = a[0], y = a[1], z = a[2], w = a[3]; out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w; out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w; out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w; out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w; return out; } } export namespace Quat { export function zero(): Quat { // force double backing array by 0.1. const ret = [0.1, 0, 0, 0]; ret[0] = 0.0; return ret as any; } export function identity(): Quat { const out = zero(); out[3] = 1; return out; } export function create(x: number, y: number, z: number, w: number) { const out = identity(); out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } export function setAxisAngle(out: Quat, axis: Vec3, rad: number) { rad = rad * 0.5; let s = Math.sin(rad); out[0] = s * axis[0]; out[1] = s * axis[1]; out[2] = s * axis[2]; out[3] = Math.cos(rad); return out; } /** * Gets the rotation axis and angle for a given * quaternion. If a quaternion is created with * setAxisAngle, this method will return the same * values as providied in the original parameter list * OR functionally equivalent values. * Example: The quaternion formed by axis [0, 0, 1] and * angle -90 is the same as the quaternion formed by * [0, 0, 1] and 270. This method favors the latter. */ export function getAxisAngle(out_axis: Vec3, q: Quat) { let rad = Math.acos(q[3]) * 2.0; let s = Math.sin(rad / 2.0); if (s !== 0.0) { out_axis[0] = q[0] / s; out_axis[1] = q[1] / s; out_axis[2] = q[2] / s; } else { // If s is zero, return any axis (no rotation - axis does not matter) out_axis[0] = 1; out_axis[1] = 0; out_axis[2] = 0; } return rad; } export function multiply(out: Quat, a: Quat, b: Quat) { let ax = a[0], ay = a[1], az = a[2], aw = a[3]; let bx = b[0], by = b[1], bz = b[2], bw = b[3]; out[0] = ax * bw + aw * bx + ay * bz - az * by; out[1] = ay * bw + aw * by + az * bx - ax * bz; out[2] = az * bw + aw * bz + ax * by - ay * bx; out[3] = aw * bw - ax * bx - ay * by - az * bz; return out; } export function rotateX(out: Quat, a: Quat, rad: number) { rad *= 0.5; let ax = a[0], ay = a[1], az = a[2], aw = a[3]; let bx = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw + aw * bx; out[1] = ay * bw + az * bx; out[2] = az * bw - ay * bx; out[3] = aw * bw - ax * bx; return out; } export function rotateY(out: Quat, a: Quat, rad: number) { rad *= 0.5; let ax = a[0], ay = a[1], az = a[2], aw = a[3]; let by = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw - az * by; out[1] = ay * bw + aw * by; out[2] = az * bw + ax * by; out[3] = aw * bw - ay * by; return out; } export function rotateZ(out: Quat, a: Quat, rad: number) { rad *= 0.5; let ax = a[0], ay = a[1], az = a[2], aw = a[3]; let bz = Math.sin(rad), bw = Math.cos(rad); out[0] = ax * bw + ay * bz; out[1] = ay * bw - ax * bz; out[2] = az * bw + aw * bz; out[3] = aw * bw - az * bz; return out; } /** * Calculates the W component of a quat from the X, Y, and Z components. * Assumes that quaternion is 1 unit in length. * Any existing W component will be ignored. */ export function calculateW(out: Quat, a: Quat) { let x = a[0], y = a[1], z = a[2]; out[0] = x; out[1] = y; out[2] = z; out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z)); return out; } /** * Performs a spherical linear interpolation between two quat */ export function slerp(out: Quat, a: Quat, b: Quat, t: number) { // benchmarks: // http://jsperf.com/quaternion-slerp-implementations let ax = a[0], ay = a[1], az = a[2], aw = a[3]; let bx = b[0], by = b[1], bz = b[2], bw = b[3]; let omega, cosom, sinom, scale0, scale1; // calc cosine cosom = ax * bx + ay * by + az * bz + aw * bw; // adjust signs (if necessary) if ( cosom < 0.0 ) { cosom = -cosom; bx = - bx; by = - by; bz = - bz; bw = - bw; } // calculate coefficients if ( (1.0 - cosom) > 0.000001 ) { // standard case (slerp) omega = Math.acos(cosom); sinom = Math.sin(omega); scale0 = Math.sin((1.0 - t) * omega) / sinom; scale1 = Math.sin(t * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - t; scale1 = t; } // calculate final values out[0] = scale0 * ax + scale1 * bx; out[1] = scale0 * ay + scale1 * by; out[2] = scale0 * az + scale1 * bz; out[3] = scale0 * aw + scale1 * bw; return out; } export function invert(out: Quat, a: Quat) { let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; let dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3; let invDot = dot ? 1.0/dot : 0; // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0 out[0] = -a0 * invDot; out[1] = -a1 * invDot; out[2] = -a2 * invDot; out[3] = a3 * invDot; return out; } /** * Calculates the conjugate of a quat * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result. */ export function conjugate(out: Quat, a: Quat) { out[0] = -a[0]; out[1] = -a[1]; out[2] = -a[2]; out[3] = a[3]; return out; } /** * Creates a quaternion from the given 3x3 rotation matrix. * * NOTE: The resultant quaternion is not normalized, so you should be sure * to renormalize the quaternion yourself where necessary. */ export function fromMat3(out: Quat, m: Mat3) { // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes // article "Quaternion Calculus and Fast Animation". const fTrace = m[0] + m[4] + m[8]; let fRoot; if ( fTrace > 0.0 ) { // |w| > 1/2, may as well choose w > 1/2 fRoot = Math.sqrt(fTrace + 1.0); // 2w out[3] = 0.5 * fRoot; fRoot = 0.5/fRoot; // 1/(4w) out[0] = (m[5]-m[7])*fRoot; out[1] = (m[6]-m[2])*fRoot; out[2] = (m[1]-m[3])*fRoot; } else { // |w| <= 1/2 let i = 0; if ( m[4] > m[0] ) i = 1; if ( m[8] > m[i*3+i] ) i = 2; let j = (i+1)%3; let k = (i+2)%3; fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0); out[i] = 0.5 * fRoot; fRoot = 0.5 / fRoot; out[3] = (m[j*3+k] - m[k*3+j]) * fRoot; out[j] = (m[j*3+i] + m[i*3+j]) * fRoot; out[k] = (m[k*3+i] + m[i*3+k]) * fRoot; } return out; } export function clone(a: Quat) { const out = zero(); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } export function copy(out: Quat, a: Quat) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } export function set(out: Quat, x: number, y: number, z: number, w: number) { out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } export function add(out: Quat, a: Quat, b: Quat) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; return out; } export function normalize(out: Quat, a: Quat) { let x = a[0]; let y = a[1]; let z = a[2]; let w = a[3]; let len = x*x + y*y + z*z + w*w; if (len > 0) { len = 1 / Math.sqrt(len); out[0] = x * len; out[1] = y * len; out[2] = z * len; out[3] = w * len; } return out; } /** * Sets a quaternion to represent the shortest rotation from one * vector to another. * * Both vectors are assumed to be unit length. */ const rotTmpVec3 = Vec3.zero(); const rotTmpVec3UnitX = Vec3.create(1, 0, 0); const rotTmpVec3UnitY = Vec3.create(0, 1, 0); export function rotationTo(out: Quat, a: Vec3, b: Vec3) { let dot = Vec3.dot(a, b); if (dot < -0.999999) { Vec3.cross(rotTmpVec3, rotTmpVec3UnitX, a); if (Vec3.magnitude(rotTmpVec3) < 0.000001) Vec3.cross(rotTmpVec3, rotTmpVec3UnitY, a); Vec3.normalize(rotTmpVec3, rotTmpVec3); setAxisAngle(out, rotTmpVec3, Math.PI); return out; } else if (dot > 0.999999) { out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 1; return out; } else { Vec3.cross(rotTmpVec3, a, b); out[0] = rotTmpVec3[0]; out[1] = rotTmpVec3[1]; out[2] = rotTmpVec3[2]; out[3] = 1 + dot; return normalize(out, out); } } /** * Performs a spherical linear interpolation with two control points */ let sqlerpTemp1 = Quat.zero(); let sqlerpTemp2 = Quat.zero(); export function sqlerp(out: Quat, a: Quat, b: Quat, c: Quat, d: Quat, t: number) { slerp(sqlerpTemp1, a, d, t); slerp(sqlerpTemp2, b, c, t); slerp(out, sqlerpTemp1, sqlerpTemp2, 2 * t * (1 - t)); return out; } /** * Sets the specified quaternion with values corresponding to the given * axes. Each axis is a vec3 and is expected to be unit length and * perpendicular to all other specified axes. */ const axesTmpMat = Mat3.zero(); export function setAxes(out: Quat, view: Vec3, right: Vec3, up: Vec3) { axesTmpMat[0] = right[0]; axesTmpMat[3] = right[1]; axesTmpMat[6] = right[2]; axesTmpMat[1] = up[0]; axesTmpMat[4] = up[1]; axesTmpMat[7] = up[2]; axesTmpMat[2] = -view[0]; axesTmpMat[5] = -view[1]; axesTmpMat[8] = -view[2]; return normalize(out, Quat.fromMat3(out, axesTmpMat)); } }