/** * Copyright (c) 2017-2021 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose * * adapted from three.js (https://github.com/mrdoob/three.js/) * which under the MIT License, Copyright © 2010-2021 three.js authors */ export const light_frag_params = ` uniform vec3 uLightDirection[dLightCount]; uniform vec3 uLightColor[dLightCount]; uniform vec3 uAmbientColor; uniform float uReflectivity; uniform float uMetalness; uniform float uRoughness; struct PhysicalMaterial { vec3 diffuseColor; float roughness; vec3 specularColor; float specularF90; }; struct IncidentLight { vec3 color; vec3 direction; }; struct ReflectedLight { vec3 directDiffuse; vec3 directSpecular; vec3 indirectDiffuse; vec3 indirectSpecular; }; struct GeometricContext { vec3 position; vec3 normal; vec3 viewDir; }; vec3 BRDF_Lambert(const in vec3 diffuseColor) { return RECIPROCAL_PI * diffuseColor; } vec3 F_Schlick(const in vec3 f0, const in float f90, const in float dotVH) { // Original approximation by Christophe Schlick '94 // float fresnel = pow( 1.0 - dotVH, 5.0 ); // Optimized variant (presented by Epic at SIGGRAPH '13) // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf float fresnel = exp2((-5.55473 * dotVH - 6.98316) * dotVH); return f0 * (1.0 - fresnel) + (f90 * fresnel); } // Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2 // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf float V_GGX_SmithCorrelated(const in float alpha, const in float dotNL, const in float dotNV) { float a2 = pow2(alpha); float gv = dotNL * sqrt(a2 + (1.0 - a2) * pow2(dotNV)); float gl = dotNV * sqrt(a2 + (1.0 - a2) * pow2(dotNL)); return 0.5 / max(gv + gl, EPSILON); } // Microfacet Models for Refraction through Rough Surfaces - equation (33) // http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html // alpha is "roughness squared" in Disney’s reparameterization float D_GGX(const in float alpha, const in float dotNH) { float a2 = pow2(alpha); float denom = pow2(dotNH) * (a2 - 1.0) + 1.0; // avoid alpha = 0 with dotNH = 1 return RECIPROCAL_PI * a2 / pow2(denom); } // GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibility vec3 BRDF_GGX(const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness) { float alpha = pow2(roughness); // UE4's roughness vec3 halfDir = normalize( lightDir + viewDir); float dotNL = saturate(dot(normal, lightDir)); float dotNV = saturate(dot(normal, viewDir)); float dotNH = saturate(dot(normal, halfDir)); float dotVH = saturate(dot(viewDir, halfDir)); vec3 F = F_Schlick(f0, f90, dotVH); float V = V_GGX_SmithCorrelated(alpha, dotNL, dotNV); float D = D_GGX(alpha, dotNH); return F * (V * D); } // Analytical approximation of the DFG LUT, one half of the // split-sum approximation used in indirect specular lighting. // via 'environmentBRDF' from "Physically Based Shading on Mobile" // https://www.unrealengine.com/blog/physically-based-shading-on-mobile vec2 DFGApprox(const in vec3 normal, const in vec3 viewDir, const in float roughness) { float dotNV = saturate(dot(normal, viewDir)); const vec4 c0 = vec4(-1, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float a004 = min(r.x * r.x, exp2(-9.28 * dotNV)) * r.x + r.y; vec2 fab = vec2(-1.04, 1.04) * a004 + r.zw; return fab; } // Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting" // Approximates multiscattering in order to preserve energy. // http://www.jcgt.org/published/0008/01/03/ void computeMultiscattering(const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter) { vec2 fab = DFGApprox(normal, viewDir, roughness); vec3 FssEss = specularColor * fab.x + specularF90 * fab.y; float Ess = fab.x + fab.y; float Ems = 1.0 - Ess; vec3 Favg = specularColor + (1.0 - specularColor) * 0.047619; // 1/21 vec3 Fms = FssEss * Favg / (1.0 - Ems * Favg); singleScatter += FssEss; multiScatter += Fms * Ems; } void RE_Direct_Physical(const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) { float dotNL = saturate(dot(geometry.normal, directLight.direction)); vec3 irradiance = dotNL * directLight.color; reflectedLight.directSpecular += irradiance * BRDF_GGX(directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness); reflectedLight.directDiffuse += irradiance * BRDF_Lambert(material.diffuseColor); } void RE_IndirectDiffuse_Physical(const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) { reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert(material.diffuseColor); } void RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) { // Both indirect specular and indirect diffuse light accumulate here vec3 singleScattering = vec3(0.0); vec3 multiScattering = vec3(0.0); vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI; computeMultiscattering(geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering); vec3 diffuse = material.diffuseColor * (1.0 - ( singleScattering + multiScattering)); reflectedLight.indirectSpecular += radiance * singleScattering; reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance; reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance; } `;