/** * Copyright (c) 2021 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Sukolsak Sakshuwong */ import { GraphicsRenderObject } from '../../mol-gl/render-object'; import { MeshValues } from '../../mol-gl/renderable/mesh'; import { LinesValues } from '../../mol-gl/renderable/lines'; import { PointsValues } from '../../mol-gl/renderable/points'; import { SpheresValues } from '../../mol-gl/renderable/spheres'; import { CylindersValues } from '../../mol-gl/renderable/cylinders'; import { BaseValues, SizeValues } from '../../mol-gl/renderable/schema'; import { TextureImage } from '../../mol-gl/renderable/util'; import { MeshBuilder } from '../../mol-geo/geometry/mesh/mesh-builder'; import { addSphere } from '../../mol-geo/geometry/mesh/builder/sphere'; import { addCylinder } from '../../mol-geo/geometry/mesh/builder/cylinder'; import { Vec3, Mat3, Mat4 } from '../../mol-math/linear-algebra'; import { RuntimeContext } from '../../mol-task'; import { StringBuilder } from '../../mol-util'; import { Color } from '../../mol-util/color/color'; import { decodeFloatRGB } from '../../mol-util/float-packing'; // avoiding namespace lookup improved performance in Chrome (Aug 2020) const v3fromArray = Vec3.fromArray; const v3transformMat4 = Vec3.transformMat4; const v3transformMat3 = Vec3.transformMat3; const mat3directionTransform = Mat3.directionTransform; type RenderObjectExportData = { [k: string]: string | Uint8Array | undefined } interface RenderObjectExporter { add(renderObject: GraphicsRenderObject, ctx: RuntimeContext): Promise | undefined getData(): D } // http://paulbourke.net/dataformats/obj/ // http://paulbourke.net/dataformats/mtl/ export type ObjData = { obj: string mtl: string } export class ObjExporter implements RenderObjectExporter { private obj = StringBuilder.create(); private mtl = StringBuilder.create(); private vertexOffset = 0; private currentColor: Color | undefined; private currentAlpha: number | undefined; private materialSet = new Set(); private static getSizeFromTexture(tSize: TextureImage, i: number): number { const r = tSize.array[i * 3]; const g = tSize.array[i * 3 + 1]; const b = tSize.array[i * 3 + 2]; return decodeFloatRGB(r, g, b); } private static getSize(values: BaseValues & SizeValues, instanceIndex: number, group: number): number { const tSize = values.tSize.ref.value; let size = 0; switch (values.dSizeType.ref.value) { case 'uniform': size = values.uSize.ref.value; break; case 'instance': size = ObjExporter.getSizeFromTexture(tSize, instanceIndex) / 100; break; case 'group': size = ObjExporter.getSizeFromTexture(tSize, group) / 100; break; case 'groupInstance': const groupCount = values.uGroupCount.ref.value; size = ObjExporter.getSizeFromTexture(tSize, instanceIndex * groupCount + group) / 100; break; } return size * values.uSizeFactor.ref.value; } private updateMaterial(color: Color, alpha: number) { if (this.currentColor === color && this.currentAlpha === alpha) return; this.currentColor = color; this.currentAlpha = alpha; const material = Color.toHexString(color) + alpha; StringBuilder.writeSafe(this.obj, `usemtl ${material}`); StringBuilder.newline(this.obj); if (!this.materialSet.has(material)) { this.materialSet.add(material); const [r, g, b] = Color.toRgbNormalized(color); const mtl = this.mtl; StringBuilder.writeSafe(mtl, `newmtl ${material}\n`); StringBuilder.writeSafe(mtl, 'illum 2\n'); // illumination model StringBuilder.writeSafe(mtl, 'Ns 163\n'); // specular exponent StringBuilder.writeSafe(mtl, 'Ni 0.001\n'); // optical density a.k.a. index of refraction StringBuilder.writeSafe(mtl, 'Ka 0 0 0\n'); // ambient reflectivity StringBuilder.writeSafe(mtl, 'Kd '); // diffuse reflectivity StringBuilder.writeFloat(mtl, r, 1000); StringBuilder.whitespace1(mtl); StringBuilder.writeFloat(mtl, g, 1000); StringBuilder.whitespace1(mtl); StringBuilder.writeFloat(mtl, b, 1000); StringBuilder.newline(mtl); StringBuilder.writeSafe(mtl, 'Ks 0.25 0.25 0.25\n'); // specular reflectivity StringBuilder.writeSafe(mtl, 'd '); // dissolve StringBuilder.writeFloat(mtl, alpha, 1000); StringBuilder.newline(mtl); } } private async addMeshWithColors(vertices: Float32Array, normals: Float32Array, indices: Uint32Array, groups: Float32Array, vertexCount: number, drawCount: number, values: BaseValues, instanceIndex: number, ctx: RuntimeContext) { const obj = this.obj; const t = Mat4(); const n = Mat3(); const tmpV = Vec3(); const colorType = values.dColorType.ref.value; const tColor = values.tColor.ref.value.array; const uAlpha = values.uAlpha.ref.value; const aTransform = values.aTransform.ref.value; Mat4.fromArray(t, aTransform, instanceIndex * 16); mat3directionTransform(n, t); const currentProgress = (vertexCount * 2 + drawCount) * instanceIndex; await ctx.update({ isIndeterminate: false, current: currentProgress, max: (vertexCount * 2 + drawCount) * values.uInstanceCount.ref.value }); // position for (let i = 0; i < vertexCount; ++i) { if (i % 1000 === 0 && ctx.shouldUpdate) await ctx.update({ current: currentProgress + i }); v3transformMat4(tmpV, v3fromArray(tmpV, vertices, i * 3), t); StringBuilder.writeSafe(obj, 'v '); StringBuilder.writeFloat(obj, tmpV[0], 1000); StringBuilder.whitespace1(obj); StringBuilder.writeFloat(obj, tmpV[1], 1000); StringBuilder.whitespace1(obj); StringBuilder.writeFloat(obj, tmpV[2], 1000); StringBuilder.newline(obj); } // normal for (let i = 0; i < vertexCount; ++i) { if (i % 1000 === 0 && ctx.shouldUpdate) await ctx.update({ current: currentProgress + vertexCount + i }); v3transformMat3(tmpV, v3fromArray(tmpV, normals, i * 3), n); StringBuilder.writeSafe(obj, 'vn '); StringBuilder.writeFloat(obj, tmpV[0], 100); StringBuilder.whitespace1(obj); StringBuilder.writeFloat(obj, tmpV[1], 100); StringBuilder.whitespace1(obj); StringBuilder.writeFloat(obj, tmpV[2], 100); StringBuilder.newline(obj); } // face for (let i = 0; i < drawCount; i += 3) { if (i % 3000 === 0 && ctx.shouldUpdate) await ctx.update({ current: currentProgress + vertexCount * 2 + i }); let color: Color; switch (colorType) { case 'uniform': color = Color.fromNormalizedArray(values.uColor.ref.value, 0); break; case 'instance': color = Color.fromArray(tColor, instanceIndex * 3); break; case 'group': color = Color.fromArray(tColor, groups[indices[i]] * 3); break; case 'groupInstance': const groupCount = values.uGroupCount.ref.value; const group = groups[indices[i]]; color = Color.fromArray(tColor, (instanceIndex * groupCount + group) * 3); break; case 'vertex': color = Color.fromArray(tColor, i * 3); break; case 'vertexInstance': color = Color.fromArray(tColor, (instanceIndex * drawCount + i) * 3); break; default: throw new Error('Unsupported color type.'); } this.updateMaterial(color, uAlpha); const v1 = this.vertexOffset + indices[i] + 1; const v2 = this.vertexOffset + indices[i + 1] + 1; const v3 = this.vertexOffset + indices[i + 2] + 1; StringBuilder.writeSafe(obj, 'f '); StringBuilder.writeInteger(obj, v1); StringBuilder.writeSafe(obj, '//'); StringBuilder.writeIntegerAndSpace(obj, v1); StringBuilder.writeInteger(obj, v2); StringBuilder.writeSafe(obj, '//'); StringBuilder.writeIntegerAndSpace(obj, v2); StringBuilder.writeInteger(obj, v3); StringBuilder.writeSafe(obj, '//'); StringBuilder.writeInteger(obj, v3); StringBuilder.newline(obj); } this.vertexOffset += vertexCount; } private async addMesh(values: MeshValues, ctx: RuntimeContext) { const aPosition = values.aPosition.ref.value; const aNormal = values.aNormal.ref.value; const elements = values.elements.ref.value; const aGroup = values.aGroup.ref.value; const instanceCount = values.instanceCount.ref.value; const vertexCount = values.uVertexCount.ref.value; const drawCount = values.drawCount.ref.value; for (let instanceIndex = 0; instanceIndex < instanceCount; ++instanceIndex) { await this.addMeshWithColors(aPosition, aNormal, elements, aGroup, vertexCount, drawCount, values, instanceIndex, ctx); } } private async addLines(values: LinesValues, ctx: RuntimeContext) { // TODO } private async addPoints(values: PointsValues, ctx: RuntimeContext) { // TODO } private async addSpheres(values: SpheresValues, ctx: RuntimeContext) { const center = Vec3(); const aPosition = values.aPosition.ref.value; const aGroup = values.aGroup.ref.value; const instanceCount = values.instanceCount.ref.value; const vertexCount = values.uVertexCount.ref.value; for (let instanceIndex = 0; instanceIndex < instanceCount; ++instanceIndex) { const state = MeshBuilder.createState(512, 256); for (let i = 0; i < vertexCount; i += 4) { v3fromArray(center, aPosition, i * 3); const group = aGroup[i]; const radius = ObjExporter.getSize(values, instanceIndex, group); state.currentGroup = group; addSphere(state, center, radius, 2); } const mesh = MeshBuilder.getMesh(state); const vertices = mesh.vertexBuffer.ref.value; const normals = mesh.normalBuffer.ref.value; const indices = mesh.indexBuffer.ref.value; const groups = mesh.groupBuffer.ref.value; await this.addMeshWithColors(vertices, normals, indices, groups, vertices.length / 3, indices.length, values, instanceIndex, ctx); } } private async addCylinders(values: CylindersValues, ctx: RuntimeContext) { const start = Vec3(); const end = Vec3(); const aStart = values.aStart.ref.value; const aEnd = values.aEnd.ref.value; const aScale = values.aScale.ref.value; const aCap = values.aCap.ref.value; const aGroup = values.aGroup.ref.value; const instanceCount = values.instanceCount.ref.value; const vertexCount = values.uVertexCount.ref.value; for (let instanceIndex = 0; instanceIndex < instanceCount; ++instanceIndex) { const state = MeshBuilder.createState(512, 256); for (let i = 0; i < vertexCount; i += 6) { v3fromArray(start, aStart, i * 3); v3fromArray(end, aEnd, i * 3); const group = aGroup[i]; const radius = ObjExporter.getSize(values, instanceIndex, group) * aScale[i]; const cap = aCap[i]; const topCap = cap === 1 || cap === 3; const bottomCap = cap >= 2; const cylinderProps = { radiusTop: radius, radiusBottom: radius, topCap, bottomCap, radialSegments: 32 }; state.currentGroup = aGroup[i]; addCylinder(state, start, end, 1, cylinderProps); } const mesh = MeshBuilder.getMesh(state); const vertices = mesh.vertexBuffer.ref.value; const normals = mesh.normalBuffer.ref.value; const indices = mesh.indexBuffer.ref.value; const groups = mesh.groupBuffer.ref.value; await this.addMeshWithColors(vertices, normals, indices, groups, vertices.length / 3, indices.length, values, instanceIndex, ctx); } } add(renderObject: GraphicsRenderObject, ctx: RuntimeContext) { if (!renderObject.state.visible) return; switch (renderObject.type) { case 'mesh': return this.addMesh(renderObject.values as MeshValues, ctx); case 'lines': return this.addLines(renderObject.values as LinesValues, ctx); case 'points': return this.addPoints(renderObject.values as PointsValues, ctx); case 'spheres': return this.addSpheres(renderObject.values as SpheresValues, ctx); case 'cylinders': return this.addCylinders(renderObject.values as CylindersValues, ctx); } } getData() { return { obj: StringBuilder.getString(this.obj), mtl: StringBuilder.getString(this.mtl) }; } constructor(filename: string) { StringBuilder.writeSafe(this.obj, `mtllib ${filename}.mtl\n`); } }