/** * Copyright (c) 2018-2019 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose */ import { ParamDefinition as PD } from '../../../mol-util/param-definition'; import { VisualContext } from '../../visual'; import { Unit, Structure } from '../../../mol-model/structure'; import { Theme } from '../../../mol-theme/theme'; import { Mesh } from '../../../mol-geo/geometry/mesh/mesh'; import { MeshBuilder } from '../../../mol-geo/geometry/mesh/mesh-builder'; import { createCurveSegmentState, PolymerTraceIterator, interpolateCurveSegment, interpolateSizes, PolymerLocationIterator, getPolymerElementLoci, eachPolymerElement, HelixTension, NucleicShift, StandardShift, StandardTension, OverhangFactor } from './util/polymer'; import { isNucleic, SecondaryStructureType } from '../../../mol-model/structure/model/types'; import { addSheet } from '../../../mol-geo/geometry/mesh/builder/sheet'; import { addTube } from '../../../mol-geo/geometry/mesh/builder/tube'; import { UnitsMeshParams, UnitsVisual, UnitsMeshVisual, StructureGroup } from '../units-visual'; import { VisualUpdateState } from '../../util'; import { SecondaryStructureProvider } from '../../../mol-model-props/computed/secondary-structure'; import { addRibbon } from '../../../mol-geo/geometry/mesh/builder/ribbon'; import { addSphere } from '../../../mol-geo/geometry/mesh/builder/sphere'; import { Vec3 } from '../../../mol-math/linear-algebra'; export const PolymerTraceMeshParams = { sizeFactor: PD.Numeric(0.2, { min: 0, max: 10, step: 0.01 }), detail: PD.Numeric(0, { min: 0, max: 3, step: 1 }), linearSegments: PD.Numeric(8, { min: 1, max: 48, step: 1 }), radialSegments: PD.Numeric(16, { min: 2, max: 56, step: 2 }), aspectRatio: PD.Numeric(5, { min: 0.1, max: 10, step: 0.1 }), arrowFactor: PD.Numeric(1.5, { min: 0, max: 3, step: 0.1 }), } export const DefaultPolymerTraceMeshProps = PD.getDefaultValues(PolymerTraceMeshParams) export type PolymerTraceMeshProps = typeof DefaultPolymerTraceMeshProps const tmpV1 = Vec3() function createPolymerTraceMesh(ctx: VisualContext, unit: Unit, structure: Structure, theme: Theme, props: PolymerTraceMeshProps, mesh?: Mesh) { const polymerElementCount = unit.polymerElements.length if (!polymerElementCount) return Mesh.createEmpty(mesh) const { sizeFactor, detail, linearSegments, radialSegments, aspectRatio, arrowFactor } = props const vertexCount = linearSegments * radialSegments * polymerElementCount + (radialSegments + 1) * polymerElementCount * 2 const builderState = MeshBuilder.createState(vertexCount, vertexCount / 10, mesh) const isCoarse = Unit.isCoarse(unit) const state = createCurveSegmentState(linearSegments) const { curvePoints, normalVectors, binormalVectors, widthValues, heightValues } = state let i = 0 const polymerTraceIt = PolymerTraceIterator(unit, structure) while (polymerTraceIt.hasNext) { const v = polymerTraceIt.move() builderState.currentGroup = i const isNucleicType = isNucleic(v.moleculeType) const isSheet = SecondaryStructureType.is(v.secStrucType, SecondaryStructureType.Flag.Beta) const isHelix = SecondaryStructureType.is(v.secStrucType, SecondaryStructureType.Flag.Helix) const tension = isHelix ? HelixTension : StandardTension const shift = isNucleicType ? NucleicShift : StandardShift interpolateCurveSegment(state, v, tension, shift) let w0 = theme.size.size(v.centerPrev) * sizeFactor let w1 = theme.size.size(v.center) * sizeFactor let w2 = theme.size.size(v.centerNext) * sizeFactor if (isCoarse) { w0 *= aspectRatio / 2 w1 *= aspectRatio / 2 w2 *= aspectRatio / 2 } const startCap = v.secStrucFirst || v.coarseBackboneFirst || v.first const endCap = v.secStrucLast || v.coarseBackboneLast || v.last let segmentCount = linearSegments if (v.initial) { segmentCount = Math.max(Math.round(linearSegments * shift), 1) const offset = linearSegments - segmentCount curvePoints.copyWithin(0, offset * 3) binormalVectors.copyWithin(0, offset * 3) normalVectors.copyWithin(0, offset * 3) Vec3.fromArray(tmpV1, curvePoints, 3) Vec3.normalize(tmpV1, Vec3.sub(tmpV1, v.p2, tmpV1)) Vec3.scaleAndAdd(tmpV1, v.p2, tmpV1, w1 * OverhangFactor) Vec3.toArray(tmpV1, curvePoints, 0) } else if (v.final) { segmentCount = Math.max(Math.round(linearSegments * (1 - shift)), 1) Vec3.fromArray(tmpV1, curvePoints, segmentCount * 3 - 3) Vec3.normalize(tmpV1, Vec3.sub(tmpV1, v.p2, tmpV1)) Vec3.scaleAndAdd(tmpV1, v.p2, tmpV1, w1 * OverhangFactor) Vec3.toArray(tmpV1, curvePoints, segmentCount * 3) } if (v.initial === true && v.final === true) { addSphere(builderState, v.p2, w1 * 2, detail) } else if (isSheet) { const h0 = w0 * aspectRatio const h1 = w1 * aspectRatio const h2 = w2 * aspectRatio const arrowHeight = v.secStrucLast ? h1 * arrowFactor : 0 interpolateSizes(state, w0, w1, w2, h0, h1, h2, shift) if (radialSegments === 2) { addRibbon(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, widthValues, heightValues, arrowHeight) } else { addSheet(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, widthValues, heightValues, arrowHeight, startCap, endCap) } } else { let h0: number, h1: number, h2: number if (isHelix && !v.isCoarseBackbone) { h0 = w0 * aspectRatio h1 = w1 * aspectRatio h2 = w2 * aspectRatio } else if (isNucleicType && !v.isCoarseBackbone) { h0 = w0 * aspectRatio; h1 = w1 * aspectRatio; h2 = w2 * aspectRatio; [w0, h0] = [h0, w0]; [w1, h1] = [h1, w1]; [w2, h2] = [h2, w2]; } else { h0 = w0 h1 = w1 h2 = w2 } interpolateSizes(state, w0, w1, w2, h0, h1, h2, shift) if (radialSegments === 2) { if (isNucleicType && !v.isCoarseBackbone) { // TODO find a cleaner way to swap normal and binormal for nucleic types for (let i = 0, il = binormalVectors.length; i < il; i++) binormalVectors[i] *= -1 addRibbon(builderState, curvePoints, binormalVectors, normalVectors, segmentCount, heightValues, widthValues, 0) } else { addRibbon(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, widthValues, heightValues, 0) } } else if (radialSegments === 4) { addSheet(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, widthValues, heightValues, 0, startCap, endCap) } else { addTube(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, radialSegments, widthValues, heightValues, 1, startCap, endCap) } } ++i } return MeshBuilder.getMesh(builderState) } export const PolymerTraceParams = { ...UnitsMeshParams, ...PolymerTraceMeshParams } export type PolymerTraceParams = typeof PolymerTraceParams export function PolymerTraceVisual(materialId: number): UnitsVisual { return UnitsMeshVisual({ defaultProps: PD.getDefaultValues(PolymerTraceParams), createGeometry: createPolymerTraceMesh, createLocationIterator: PolymerLocationIterator.fromGroup, getLoci: getPolymerElementLoci, eachLocation: eachPolymerElement, setUpdateState: (state: VisualUpdateState, newProps: PD.Values, currentProps: PD.Values, newTheme: Theme, currentTheme: Theme, newStructureGroup: StructureGroup, currentStructureGroup: StructureGroup) => { state.createGeometry = ( newProps.sizeFactor !== currentProps.sizeFactor || newProps.detail !== currentProps.detail || newProps.linearSegments !== currentProps.linearSegments || newProps.radialSegments !== currentProps.radialSegments || newProps.aspectRatio !== currentProps.aspectRatio || newProps.arrowFactor !== currentProps.arrowFactor ) const secondaryStructureHash = SecondaryStructureProvider.get(newStructureGroup.structure).version if ((state.info.secondaryStructureHash as number) !== secondaryStructureHash) { state.createGeometry = true; state.info.secondaryStructureHash = secondaryStructureHash } } }, materialId) }