123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- /**
- * Copyright (c) 2017-2018 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author David Sehnal <david.sehnal@gmail.com>
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
- */
- import Iterator from 'mol-data/iterator'
- import { Column, Table, Database, DatabaseCollection } from 'mol-data/db'
- import { Tensor } from 'mol-math/linear-algebra'
- import EncoderBase from '../encoder'
- import { ArrayEncoder, ArrayEncoding } from '../../common/binary-cif';
- // TODO: support for "coordinate fields", make "coordinate precision" a parameter of the encoder
- // TODO: automatically detect "precision" of floating point arrays.
- // TODO: automatically detect "best encoding" for integer arrays. This could be used for "fixed-point" as well.
- // TODO: add "repeat encoding"? [[1, 2], [1, 2], [1, 2]] --- Repeat ---> [[1, 2], 3]
- // TODO: Add "higher level fields"? (i.e. generalization of repeat)
- // TODO: align "data blocks" to 8 byte offsets for fast typed array windows? (prolly needs some testing if this is actually the case too)
- export interface Field<Key = any, Data = any> {
- name: string,
- type: Field.Type,
- value(key: Key, data: Data, index: number): string | number
- valueKind?: (key: Key, data: Data) => Column.ValueKind,
- defaultFormat?: Field.Format,
- shouldInclude?: (data: Data) => boolean
- }
- export namespace Field {
- export const enum Type { Str, Int, Float }
- export interface Format {
- digitCount?: number,
- encoder?: ArrayEncoder,
- typedArray?: ArrayEncoding.TypedArrayCtor
- }
- export type ParamsBase<K, D> = { valueKind?: (k: K, d: D) => Column.ValueKind, encoder?: ArrayEncoder, shouldInclude?: (data: D) => boolean }
- export function str<K, D = any>(name: string, value: (k: K, d: D, index: number) => string, params?: ParamsBase<K, D>): Field<K, D> {
- return { name, type: Type.Str, value, valueKind: params && params.valueKind, defaultFormat: params && params.encoder ? { encoder: params.encoder } : void 0, shouldInclude: params && params.shouldInclude };
- }
- export function int<K, D = any>(name: string, value: (k: K, d: D, index: number) => number, params?: ParamsBase<K, D> & { typedArray?: ArrayEncoding.TypedArrayCtor }): Field<K, D> {
- return {
- name,
- type: Type.Int,
- value,
- valueKind: params && params.valueKind,
- defaultFormat: params ? { encoder: params.encoder, typedArray: params.typedArray } : void 0,
- shouldInclude: params && params.shouldInclude
- };
- }
- export function float<K, D = any>(name: string, value: (k: K, d: D, index: number) => number, params?: ParamsBase<K, D> & { typedArray?: ArrayEncoding.TypedArrayCtor, digitCount?: number }): Field<K, D> {
- return {
- name,
- type: Type.Float,
- value,
- valueKind: params && params.valueKind,
- defaultFormat: params ? { encoder: params.encoder, typedArray: params.typedArray, digitCount: typeof params.digitCount !== 'undefined' ? params.digitCount : void 0 } : void 0,
- shouldInclude: params && params.shouldInclude
- };
- }
- export function index(name: string) {
- return int(name, (e, d, i) => i + 1, { typedArray: Int32Array, encoder: ArrayEncoding.by(ArrayEncoding.delta).and(ArrayEncoding.runLength).and(ArrayEncoding.integerPacking) })
- }
- }
- export interface Category<Key = any, Data = any> {
- name: string,
- fields: Field<Key, Data>[],
- data?: Data,
- rowCount: number,
- keys?: () => Iterator<Key>
- }
- export namespace Category {
- export const Empty: Category = { name: 'empty', rowCount: 0, fields: [] };
- export interface Provider<Ctx = any> {
- (ctx: Ctx): Category
- }
- export interface Filter {
- includeCategory(categoryName: string): boolean,
- includeField(categoryName: string, fieldName: string): boolean,
- }
- export const DefaultFilter: Filter = {
- includeCategory(cat) { return true; },
- includeField(cat, field) { return true; }
- }
- export interface Formatter {
- getFormat(categoryName: string, fieldName: string): Field.Format | undefined
- }
- export const DefaultFormatter: Formatter = {
- getFormat(cat, field) { return void 0; }
- }
- export function ofTable(name: string, table: Table<Table.Schema>, indices?: ArrayLike<number>): Category<number, Table<Table.Schema>> {
- if (indices) {
- return { name, fields: cifFieldsFromTableSchema(table._schema), data: table, rowCount: indices.length, keys: () => Iterator.Array(indices) };
- }
- return { name, fields: cifFieldsFromTableSchema(table._schema), data: table, rowCount: table._rowCount };
- }
- }
- export interface Encoder<T = string | Uint8Array> extends EncoderBase {
- setFilter(filter?: Category.Filter): void,
- setFormatter(formatter?: Category.Formatter): void,
- startDataBlock(header: string): void,
- writeCategory<Ctx>(category: Category.Provider<Ctx>, contexts?: Ctx[]): void,
- getData(): T
- }
- export namespace Encoder {
- export function writeDatabase(encoder: Encoder, name: string, database: Database<Database.Schema>) {
- encoder.startDataBlock(name);
- for (const table of database._tableNames) {
- encoder.writeCategory(() => Category.ofTable(table, database[table]));
- }
- }
- export function writeDatabaseCollection(encoder: Encoder, collection: DatabaseCollection<Database.Schema>) {
- for (const name of Object.keys(collection)) {
- writeDatabase(encoder, name, collection[name])
- }
- }
- }
- function columnValue(k: string) {
- return (i: number, d: any) => d[k].value(i);
- }
- function columnListValue(k: string) {
- return (i: number, d: any) => d[k].value(i).join(d[k].schema.separator);
- }
- function columnTensorValue(k: string, ...coords: number[]) {
- return (i: number, d: any) => d[k].schema.space.get(d[k].value(i), ...coords);
- }
- function columnValueKind(k: string) {
- return (i: number, d: any) => d[k].valueKind(i);
- }
- function getTensorDefinitions(field: string, space: Tensor.Space) {
- const fieldDefinitions: Field[] = []
- const type = Field.Type.Float
- const valueKind = columnValueKind(field)
- if (space.rank === 1) {
- const rows = space.dimensions[0]
- for (let i = 0; i < rows; i++) {
- const name = `${field}[${i + 1}]`
- fieldDefinitions.push({ name, type, value: columnTensorValue(field, i), valueKind })
- }
- } else if (space.rank === 2) {
- const rows = space.dimensions[0], cols = space.dimensions[1]
- for (let i = 0; i < rows; i++) {
- for (let j = 0; j < cols; j++) {
- const name = `${field}[${i + 1}][${j + 1}]`
- fieldDefinitions.push({ name, type, value: columnTensorValue(field, i, j), valueKind })
- }
- }
- } else if (space.rank === 3) {
- const d0 = space.dimensions[0], d1 = space.dimensions[1], d2 = space.dimensions[2]
- for (let i = 0; i < d0; i++) {
- for (let j = 0; j < d1; j++) {
- for (let k = 0; k < d2; k++) {
- const name = `${field}[${i + 1}][${j + 1}][${k + 1}]`
- fieldDefinitions.push({ name, type, value: columnTensorValue(field, i, j, k), valueKind })
- }
- }
- }
- } else {
- throw new Error('Tensors with rank > 3 or rank 0 are currently not supported.')
- }
- return fieldDefinitions
- }
- function cifFieldsFromTableSchema(schema: Table.Schema) {
- const fields: Field[] = [];
- for (const k of Object.keys(schema)) {
- const t = schema[k];
- if (t.valueType === 'int') {
- fields.push({ name: k, type: Field.Type.Int, value: columnValue(k), valueKind: columnValueKind(k) });
- } else if (t.valueType === 'float') {
- fields.push({ name: k, type: Field.Type.Float, value: columnValue(k), valueKind: columnValueKind(k) });
- } else if (t.valueType === 'str') {
- fields.push({ name: k, type: Field.Type.Str, value: columnValue(k), valueKind: columnValueKind(k) });
- } else if (t.valueType === 'list') {
- fields.push({ name: k, type: Field.Type.Str, value: columnListValue(k), valueKind: columnValueKind(k) })
- } else if (t.valueType === 'tensor') {
- fields.push(...getTensorDefinitions(k, t.space))
- } else {
- throw new Error(`Unknown valueType ${t.valueType}`);
- }
- }
- return fields;
- }
|