construction.ts 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. /**
  2. * Copyright (c) 2018-2020 mol* contributors, licensed under MIT, See LICENSE file for more info.
  3. *
  4. * @author David Sehnal <david.sehnal@gmail.com>
  5. * @author Alexander Rose <alexander.rose@weirdbyte.de>
  6. */
  7. import { Vec3, Mat4 } from '../../linear-algebra'
  8. import { SpacegroupName, TransformData, GroupData, getSpacegroupIndex, OperatorData, SpacegroupNumber } from './tables'
  9. import { SymmetryOperator } from '../../geometry';
  10. interface SpacegroupCell {
  11. /** Index into spacegroup data table */
  12. readonly index: number,
  13. readonly size: Vec3,
  14. readonly volume: number,
  15. readonly anglesInRadians: Vec3,
  16. /** Transfrom cartesian -> fractional coordinates within the cell */
  17. readonly toFractional: Mat4,
  18. /** Transfrom fractional coordinates within the cell -> cartesian */
  19. readonly fromFractional: Mat4
  20. }
  21. interface Spacegroup {
  22. /** Hermann-Mauguin spacegroup name */
  23. readonly name: string,
  24. /** Spacegroup number from International Tables for Crystallography */
  25. readonly num: number,
  26. readonly cell: SpacegroupCell,
  27. readonly operators: ReadonlyArray<Mat4>
  28. }
  29. namespace SpacegroupCell {
  30. /** Create a 'P 1' with cellsize [1, 1, 1] */
  31. export const Zero: SpacegroupCell = create('P 1', Vec3.create(1, 1, 1), Vec3.create(Math.PI / 2, Math.PI / 2, Math.PI / 2));
  32. /** True if 'P 1' with cellsize [1, 1, 1] */
  33. export function isZero(cell?: SpacegroupCell) {
  34. if (!cell) return true;
  35. return cell.index === 0 && cell.size[0] === 1 && cell.size[1] === 1 && cell.size[1] === 1;
  36. }
  37. /** Returns Zero cell if the spacegroup does not exist */
  38. export function create(nameOrNumber: number | string | SpacegroupName, size: Vec3, anglesInRadians: Vec3): SpacegroupCell {
  39. const index = getSpacegroupIndex(nameOrNumber);
  40. if (index < 0) {
  41. console.warn(`Unknown spacegroup '${nameOrNumber}', returning a 'P 1' with cellsize [1, 1, 1]`)
  42. return Zero;
  43. }
  44. const volume = size[0] * size[1] * size[2]
  45. const alpha = anglesInRadians[0];
  46. const beta = anglesInRadians[1];
  47. const gamma = anglesInRadians[2];
  48. const xScale = size[0], yScale = size[1], zScale = size[2];
  49. const z1 = Math.cos(beta);
  50. const z2 = (Math.cos(alpha) - Math.cos(beta) * Math.cos(gamma)) / Math.sin(gamma);
  51. const z3 = Math.sqrt(1.0 - z1 * z1 - z2 * z2);
  52. const x = [xScale, 0.0, 0.0];
  53. const y = [Math.cos(gamma) * yScale, Math.sin(gamma) * yScale, 0.0];
  54. const z = [z1 * zScale, z2 * zScale, z3 * zScale];
  55. const fromFractional = Mat4.ofRows([
  56. [x[0], y[0], z[0], 0],
  57. [0, y[1], z[1], 0],
  58. [0, 0, z[2], 0],
  59. [0, 0, 0, 1.0]
  60. ]);
  61. const toFractional = Mat4.invert(Mat4.zero(), fromFractional)!;
  62. return { index, size, volume, anglesInRadians, toFractional, fromFractional };
  63. }
  64. }
  65. namespace Spacegroup {
  66. /** P1 with [1, 1, 1] cell */
  67. export const ZeroP1 = create(SpacegroupCell.Zero);
  68. export function create(cell: SpacegroupCell): Spacegroup {
  69. const operators = GroupData[cell.index].map(i => getOperatorMatrix(OperatorData[i]));
  70. const name = SpacegroupName[cell.index]
  71. const num = SpacegroupNumber[cell.index]
  72. return { name, num, cell, operators };
  73. }
  74. const _ijkVec = Vec3();
  75. const _tempMat = Mat4();
  76. export function setOperatorMatrix(spacegroup: Spacegroup, index: number, i: number, j: number, k: number, target: Mat4) {
  77. Vec3.set(_ijkVec, i, j, k);
  78. Mat4.fromTranslation(_tempMat, _ijkVec);
  79. return Mat4.mul(
  80. target,
  81. Mat4.mul(
  82. target,
  83. Mat4.mul(target, spacegroup.cell.fromFractional, _tempMat),
  84. spacegroup.operators[index]
  85. ),
  86. spacegroup.cell.toFractional
  87. );
  88. }
  89. export function getSymmetryOperator(spacegroup: Spacegroup, spgrOp: number, i: number, j: number, k: number): SymmetryOperator {
  90. const operator = setOperatorMatrix(spacegroup, spgrOp, i, j, k, Mat4.zero());
  91. return SymmetryOperator.create(`${spgrOp + 1}_${5 + i}${5 + j}${5 + k}`, operator, { hkl: Vec3.create(i, j, k), spgrOp });
  92. }
  93. const _translationRef = Vec3()
  94. const _translationRefSymop = Vec3()
  95. const _translationSymop = Vec3()
  96. export function setOperatorMatrixRef(spacegroup: Spacegroup, index: number, i: number, j: number, k: number, ref: Vec3, target: Mat4) {
  97. Vec3.set(_ijkVec, i, j, k);
  98. Vec3.floor(_translationRef, ref)
  99. Mat4.copy(target, spacegroup.operators[index])
  100. Vec3.floor(_translationRefSymop, Vec3.transformMat4(_translationRefSymop, ref, target))
  101. Mat4.getTranslation(_translationSymop, target)
  102. Vec3.sub(_translationSymop, _translationSymop, _translationRefSymop)
  103. Vec3.add(_translationSymop, _translationSymop, _translationRef)
  104. Vec3.add(_translationSymop, _translationSymop, _ijkVec)
  105. Mat4.setTranslation(target, _translationSymop)
  106. Mat4.mul(target, spacegroup.cell.fromFractional, target)
  107. Mat4.mul(target, target, spacegroup.cell.toFractional)
  108. return target
  109. }
  110. /**
  111. * Get Symmetry operator for transformation around the given
  112. * reference point `ref` in fractional coordinates
  113. */
  114. export function getSymmetryOperatorRef(spacegroup: Spacegroup, spgrOp: number, i: number, j: number, k: number, ref: Vec3) {
  115. const operator = setOperatorMatrixRef(spacegroup, spgrOp, i, j, k, ref, Mat4.zero());
  116. return SymmetryOperator.create(`${spgrOp + 1}_${5 + i}${5 + j}${5 + k}`, operator, { hkl: Vec3.create(i, j, k), spgrOp });
  117. }
  118. function getOperatorMatrix(ids: number[]) {
  119. const r1 = TransformData[ids[0]];
  120. const r2 = TransformData[ids[1]];
  121. const r3 = TransformData[ids[2]];
  122. return Mat4.ofRows([r1, r2, r3, [0, 0, 0, 1]]);
  123. }
  124. export function getOperatorXyz(op: Mat4) {
  125. return [
  126. formatElement(getRotation(op[0], op[4], op[8]), getShift(op[12])),
  127. formatElement(getRotation(op[1], op[5], op[9]), getShift(op[13])),
  128. formatElement(getRotation(op[2], op[6], op[10]), getShift(op[14]))
  129. ].join(',')
  130. }
  131. function getRotation(x: number, y: number, z: number) {
  132. let r: string[] = []
  133. if (x > 0) r.push('+X')
  134. else if (x < 0) r.push('-X')
  135. if (y > 0) r.push('+Y')
  136. else if (y < 0) r.push('-Y')
  137. if (z > 0) r.push('+Z')
  138. else if (z < 0) r.push('-Z')
  139. if (r.length === 1) {
  140. return r[0].charAt(0) === '+' ? r[0].substr(1) : r[0]
  141. }
  142. if (r.length === 2) {
  143. const s0 = r[0].charAt(0)
  144. const s1 = r[1].charAt(0)
  145. if (s0 === '+') return `${r[0].substr(1)}${r[1]}`
  146. if (s1 === '+') return `${r[1].substr(1)}${r[0]}`
  147. }
  148. throw new Error(`unknown rotation '${r}', ${x} ${y} ${z}`)
  149. }
  150. function getShift(s: number) {
  151. switch (s) {
  152. case 1 / 2: return '1/2'
  153. case 1 / 4: return '1/4'
  154. case 3 / 4: return '3/4'
  155. case 1 / 3: return '1/3'
  156. case 2 / 3: return '2/3'
  157. case 1 / 6: return '1/6'
  158. case 5 / 6: return '5/6'
  159. }
  160. return ''
  161. }
  162. function formatElement(rotation: string, shift: string) {
  163. if (shift === '') return rotation
  164. if (rotation.length > 2) return `${rotation}+${shift}`
  165. return rotation.charAt(0) === '-' ? `${shift}${rotation}` : `${shift}+${rotation}`
  166. }
  167. }
  168. export { Spacegroup, SpacegroupCell }