123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /**
- * Copyright (c) 2017-2018 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author David Sehnal <david.sehnal@gmail.com>
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
- */
- import { DatabaseCollection, Database, Table, Column, ColumnHelpers } from 'mol-data/db'
- import { Tensor } from 'mol-math/linear-algebra'
- import { arrayEqual } from 'mol-util'
- import * as Data from './data-model'
- export function toDatabaseCollection<Schema extends Database.Schema>(schema: Schema, file: Data.CifFile): DatabaseCollection<Schema> {
- const dbc: DatabaseCollection<Schema> = {}
- for (const data of file.blocks) {
- dbc[data.header] = toDatabase(schema, data)
- }
- return dbc;
- }
- export function toDatabase<Schema extends Database.Schema, Frame extends Database<Schema> = Database<Schema>>(schema: Schema, frame: Data.CifFrame): Frame {
- return createDatabase(schema, frame) as Frame;
- }
- export function toTable<Schema extends Table.Schema, R extends Table<Schema> = Table<Schema>>(schema: Schema, category: Data.CifCategory): R {
- return new CategoryTable(category, schema, true) as any;
- }
- type ColumnCtor = (field: Data.CifField, category: Data.CifCategory, key: string) => Column<any>
- function getColumnCtor(t: Column.Schema): ColumnCtor {
- switch (t.valueType) {
- case 'str': return (f, c, k) => createColumn(t, f, f.str, f.toStringArray);
- case 'int': return (f, c, k) => createColumn(t, f, f.int, f.toIntArray);
- case 'float': return (f, c, k) => createColumn(t, f, f.float, f.toFloatArray);
- case 'list': throw new Error('Use createListColumn instead.');
- case 'tensor': throw new Error('Use createTensorColumn instead.');
- }
- }
- function createColumn<T>(schema: Column.Schema, field: Data.CifField, value: (row: number) => T, toArray: Column<T>['toArray']): Column<T> {
- return {
- schema,
- __array: field.__array,
- isDefined: field.isDefined,
- rowCount: field.rowCount,
- value,
- valueKind: field.valueKind,
- areValuesEqual: field.areValuesEqual,
- toArray
- };
- }
- function createListColumn<T extends number|string>(schema: Column.Schema.List<T>, category: Data.CifCategory, key: string): Column<(number|string)[]> {
- const separator = schema.separator;
- const itemParse = schema.itemParse;
- const f = category.getField(key);
- const value = f ? (row: number) => f.str(row).split(separator).map(x => itemParse(x.trim())).filter(x => !!x) : (row: number) => []
- const toArray: Column<T[]>['toArray'] = params => ColumnHelpers.createAndFillArray(category.rowCount, value, params)
- return {
- schema,
- __array: void 0,
- isDefined: !!f,
- rowCount: category.rowCount,
- value,
- valueKind: f ? f.valueKind : () => Column.ValueKind.NotPresent,
- areValuesEqual: (rowA, rowB) => arrayEqual(value(rowA), value(rowB)),
- toArray
- };
- }
- function createTensorColumn(schema: Column.Schema.Tensor, category: Data.CifCategory, key: string): Column<Tensor.Data> {
- const space = schema.space;
- const zeroOffset = category.fieldNames.indexOf(`${key}[0]`) >= 0;
- const fst = zeroOffset ? 0 : 1;
- let firstFieldName: string;
- switch (space.rank) {
- case 1: firstFieldName = `${key}[${fst}]`; break;
- case 2: firstFieldName = `${key}[${fst}][${fst}]`; break;
- case 3: firstFieldName = `${key}[${fst}][${fst}][${fst}]`; break;
- default: throw new Error('Tensors with rank > 3 or rank 0 are currently not supported.');
- }
- const first = category.getField(firstFieldName) || Column.Undefined(category.rowCount, schema);
- const value = (row: number) => Data.getTensor(category, key, space, row, zeroOffset);
- const toArray: Column<Tensor.Data>['toArray'] = params => ColumnHelpers.createAndFillArray(category.rowCount, value, params)
- return {
- schema,
- __array: void 0,
- isDefined: first.isDefined,
- rowCount: category.rowCount,
- value,
- valueKind: first.valueKind,
- areValuesEqual: (rowA, rowB) => Tensor.areEqualExact(value(rowA), value(rowB)),
- toArray
- };
- }
- class CategoryTable implements Table<any> { // tslint:disable-line:class-name
- _rowCount: number;
- _columns: ReadonlyArray<string>;
- _schema: any;
- [k: string]: any;
- constructor(category: Data.CifCategory, schema: Table.Schema, public _isDefined: boolean) {
- const fieldKeys = Object.keys(schema);
- this._rowCount = category.rowCount;
- this._columns = fieldKeys;
- this._schema = schema;
- const cache = Object.create(null);
- for (const k of fieldKeys) {
- Object.defineProperty(this, k, {
- get: function() {
- if (cache[k]) return cache[k];
- const fType = schema[k];
- if (fType.valueType === 'list') {
- cache[k] = createListColumn(fType, category, k);
- } else if (fType.valueType === 'tensor') {
- cache[k] = createTensorColumn(fType, category, k);
- } else {
- const ctor = getColumnCtor(fType);
- const field = category.getField(k);
- cache[k] = !!field ? ctor(field, category, k) : Column.Undefined(category.rowCount, fType);
- }
- return cache[k];
- },
- enumerable: true,
- configurable: false
- });
- }
- }
- }
- function createDatabase(schema: Database.Schema, frame: Data.CifFrame): Database<any> {
- const tables = Object.create(null);
- for (const k of Object.keys(schema)) {
- tables[k] = createTable(k, (schema as any)[k], frame);
- }
- return Database.ofTables(frame.header, schema, tables);
- }
- function createTable(key: string, schema: Table.Schema, frame: Data.CifFrame) {
- const cat = frame.categories[key];
- return new CategoryTable(cat || Data.CifCategory.empty(key), schema, !!cat);
- }
|