123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475 |
- /**
- * Copyright (c) 2017-2018 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author David Sehnal <david.sehnal@gmail.com>
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
- */
- /*
- * This code has been modified from https://github.com/toji/gl-matrix/,
- * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- */
- import Mat4 from './mat4';
- import { Quat, Mat3, EPSILON } from '../3d';
- import { spline as _spline, clamp } from '../../interpolate'
- interface Vec3 extends Array<number> { [d: number]: number, '@type': 'vec3', length: 3 }
- namespace Vec3 {
- export function zero(): Vec3 {
- const out = [0.1, 0.0, 0.0];
- out[0] = 0;
- return out as any;
- }
- export function clone(a: Vec3): Vec3 {
- const out = zero();
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- }
- export function fromObj(v: { x: number, y: number, z: number }): Vec3 {
- return create(v.x, v.y, v.z);
- }
- export function toObj(v: Vec3) {
- return { x: v[0], y: v[1], z: v[2] };
- }
- export function fromArray(v: Vec3, array: ArrayLike<number>, offset: number) {
- v[0] = array[offset + 0]
- v[1] = array[offset + 1]
- v[2] = array[offset + 2]
- return v
- }
- export function toArray(v: Vec3, out: Helpers.NumberArray, offset: number) {
- out[offset + 0] = v[0]
- out[offset + 1] = v[1]
- out[offset + 2] = v[2]
- }
- export function create(x: number, y: number, z: number): Vec3 {
- const out = zero();
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- }
- export function ofArray(array: ArrayLike<number>) {
- const out = zero();
- out[0] = array[0];
- out[1] = array[1];
- out[2] = array[2];
- return out;
- }
- export function set(out: Vec3, x: number, y: number, z: number): Vec3 {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- }
- export function copy(out: Vec3, a: Vec3) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- }
- export function add(out: Vec3, a: Vec3, b: Vec3) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- return out;
- }
- export function sub(out: Vec3, a: Vec3, b: Vec3) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- return out;
- }
- export function mul(out: Vec3, a: Vec3, b: Vec3) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- out[2] = a[2] * b[2];
- return out;
- }
- export function div(out: Vec3, a: Vec3, b: Vec3) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- out[2] = a[2] / b[2];
- return out;
- }
- export function scale(out: Vec3, a: Vec3, b: number) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- return out;
- }
- /** Scales b, then adds a and b together */
- export function scaleAndAdd(out: Vec3, a: Vec3, b: Vec3, scale: number) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- return out;
- }
- /** Scales b, then subtracts b from a */
- export function scaleAndSub(out: Vec3, a: Vec3, b: Vec3, scale: number) {
- out[0] = a[0] - (b[0] * scale);
- out[1] = a[1] - (b[1] * scale);
- out[2] = a[2] - (b[2] * scale);
- return out;
- }
- /**
- * Math.round the components of a Vec3
- */
- export function round(out: Vec3, a: Vec3) {
- out[0] = Math.round(a[0]);
- out[1] = Math.round(a[1]);
- out[2] = Math.round(a[2]);
- return out;
- }
- /**
- * Math.ceil the components of a Vec3
- */
- export function ceil(out: Vec3, a: Vec3) {
- out[0] = Math.ceil(a[0]);
- out[1] = Math.ceil(a[1]);
- out[2] = Math.ceil(a[2]);
- return out;
- }
- /**
- * Math.floor the components of a Vec3
- */
- export function floor(out: Vec3, a: Vec3) {
- out[0] = Math.floor(a[0]);
- out[1] = Math.floor(a[1]);
- out[2] = Math.floor(a[2]);
- return out;
- }
- /**
- * Returns the minimum of two Vec3's
- */
- export function min(out: Vec3, a: Vec3, b: Vec3) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- out[2] = Math.min(a[2], b[2]);
- return out;
- }
- /**
- * Returns the maximum of two Vec3's
- */
- export function max(out: Vec3, a: Vec3, b: Vec3) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- out[2] = Math.max(a[2], b[2]);
- return out;
- }
- export function distance(a: Vec3, b: Vec3) {
- const x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return Math.sqrt(x * x + y * y + z * z);
- }
- export function squaredDistance(a: Vec3, b: Vec3) {
- const x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return x * x + y * y + z * z;
- }
- export function magnitude(a: Vec3) {
- const x = a[0],
- y = a[1],
- z = a[2];
- return Math.sqrt(x * x + y * y + z * z);
- }
- export function squaredMagnitude(a: Vec3) {
- const x = a[0],
- y = a[1],
- z = a[2];
- return x * x + y * y + z * z;
- }
- export function setMagnitude(out: Vec3, a: Vec3, l: number) {
- return Vec3.scale(out, Vec3.normalize(out, a), l)
- }
- /**
- * Negates the components of a vec3
- */
- export function negate(out: Vec3, a: Vec3) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- return out;
- }
- /**
- * Returns the inverse of the components of a Vec3
- */
- export function inverse(out: Vec3, a: Vec3) {
- out[0] = 1.0 / a[0];
- out[1] = 1.0 / a[1];
- out[2] = 1.0 / a[2];
- return out;
- }
- export function normalize(out: Vec3, a: Vec3) {
- const x = a[0],
- y = a[1],
- z = a[2];
- let len = x * x + y * y + z * z;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- out[2] = a[2] * len;
- }
- return out;
- }
- export function dot(a: Vec3, b: Vec3) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
- }
- export function cross(out: Vec3, a: Vec3, b: Vec3) {
- const ax = a[0], ay = a[1], az = a[2],
- bx = b[0], by = b[1], bz = b[2];
- out[0] = ay * bz - az * by;
- out[1] = az * bx - ax * bz;
- out[2] = ax * by - ay * bx;
- return out;
- }
- /**
- * Performs a linear interpolation between two Vec3's
- */
- export function lerp(out: Vec3, a: Vec3, b: Vec3, t: number) {
- const ax = a[0],
- ay = a[1],
- az = a[2];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- return out;
- }
- const slerpRelVec = Vec3.zero()
- export function slerp(out: Vec3, a: Vec3, b: Vec3, t: number) {
- const dot = clamp(Vec3.dot(a, b), -1, 1);
- const theta = Math.acos(dot) * t;
- Vec3.scaleAndAdd(slerpRelVec, b, a, -dot);
- Vec3.normalize(slerpRelVec, slerpRelVec);
- return Vec3.add(out, Vec3.scale(out, a, Math.cos(theta)), Vec3.scale(slerpRelVec, slerpRelVec, Math.sin(theta)));
- }
- /**
- * Performs a hermite interpolation with two control points
- */
- export function hermite(out: Vec3, a: Vec3, b: Vec3, c: Vec3, d: Vec3, t: number) {
- const factorTimes2 = t * t;
- const factor1 = factorTimes2 * (2 * t - 3) + 1;
- const factor2 = factorTimes2 * (t - 2) + t;
- const factor3 = factorTimes2 * (t - 1);
- const factor4 = factorTimes2 * (3 - 2 * t);
- out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
- out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
- out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
- return out;
- }
- /**
- * Performs a bezier interpolation with two control points
- */
- export function bezier(out: Vec3, a: Vec3, b: Vec3, c: Vec3, d: Vec3, t: number) {
- const inverseFactor = 1 - t;
- const inverseFactorTimesTwo = inverseFactor * inverseFactor;
- const factorTimes2 = t * t;
- const factor1 = inverseFactorTimesTwo * inverseFactor;
- const factor2 = 3 * t * inverseFactorTimesTwo;
- const factor3 = 3 * factorTimes2 * inverseFactor;
- const factor4 = factorTimes2 * t;
- out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
- out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
- out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
- return out;
- }
- /**
- * Performs a spline interpolation with two control points and a tension parameter
- */
- export function spline(out: Vec3, a: Vec3, b: Vec3, c: Vec3, d: Vec3, t: number, tension: number) {
- out[0] = _spline(a[0], b[0], c[0], d[0], t, tension);
- out[1] = _spline(a[1], b[1], c[1], d[1], t, tension);
- out[2] = _spline(a[2], b[2], c[2], d[2], t, tension);
- return out;
- }
- /**
- * Generates a random vector with the given scale
- */
- export function random(out: Vec3, scale: number) {
- const r = Math.random() * 2.0 * Math.PI;
- const z = (Math.random() * 2.0) - 1.0;
- const zScale = Math.sqrt(1.0-z*z) * scale;
- out[0] = Math.cos(r) * zScale;
- out[1] = Math.sin(r) * zScale;
- out[2] = z * scale;
- return out;
- }
- /**
- * Transforms the Vec3 with a Mat4. 4th vector component is implicitly '1'
- */
- export function transformMat4(out: Vec3, a: Vec3, m: Mat4) {
- const x = a[0], y = a[1], z = a[2],
- w = 1 / ((m[3] * x + m[7] * y + m[11] * z + m[15]) || 1.0);
- out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) * w;
- out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) * w;
- out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) * w;
- return out;
- }
- /**
- * Transforms the Vec3 with a Mat3.
- */
- export function transformMat3(out: Vec3, a: Vec3, m: Mat3) {
- const x = a[0], y = a[1], z = a[2];
- out[0] = x * m[0] + y * m[3] + z * m[6];
- out[1] = x * m[1] + y * m[4] + z * m[7];
- out[2] = x * m[2] + y * m[5] + z * m[8];
- return out;
- }
- /** Transforms the Vec3 with a quat */
- export function transformQuat(out: Vec3, a: Vec3, q: Quat) {
- // benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
- const x = a[0], y = a[1], z = a[2];
- const qx = q[0], qy = q[1], qz = q[2], qw = q[3];
- // calculate quat * vec
- const ix = qw * x + qy * z - qz * y;
- const iy = qw * y + qz * x - qx * z;
- const iz = qw * z + qx * y - qy * x;
- const iw = -qx * x - qy * y - qz * z;
- // calculate result * inverse quat
- out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return out;
- }
- const angleTempA = zero(), angleTempB = zero();
- export function angle(a: Vec3, b: Vec3) {
- copy(angleTempA, a);
- copy(angleTempB, b);
- normalize(angleTempA, angleTempA);
- normalize(angleTempB, angleTempB);
- const cosine = dot(angleTempA, angleTempB);
- if (cosine > 1.0) {
- return 0;
- }
- else if (cosine < -1.0) {
- return Math.PI;
- } else {
- return Math.acos(cosine);
- }
- }
- /**
- * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
- */
- export function exactEquals(a: Vec3, b: Vec3) {
- return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
- }
- /**
- * Returns whether or not the vectors have approximately the same elements in the same position.
- */
- export function equals(a: Vec3, b: Vec3) {
- const a0 = a[0], a1 = a[1], a2 = a[2];
- const b0 = b[0], b1 = b[1], b2 = b[2];
- return (Math.abs(a0 - b0) <= EPSILON.Value * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
- Math.abs(a1 - b1) <= EPSILON.Value * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
- Math.abs(a2 - b2) <= EPSILON.Value * Math.max(1.0, Math.abs(a2), Math.abs(b2)));
- }
- const rotTemp = zero();
- export function makeRotation(mat: Mat4, a: Vec3, b: Vec3): Mat4 {
- const by = angle(a, b);
- if (Math.abs(by) < 0.0001) return Mat4.setIdentity(mat);
- const axis = cross(rotTemp, a, b);
- return Mat4.fromRotation(mat, by, axis);
- }
- export function isZero(v: Vec3) {
- return v[0] === 0 && v[1] === 0 && v[2] === 0;
- }
- export function projectPointOnVector(out: Vec3, point: Vec3, vector: Vec3, origin: Vec3) {
- // point.sub(origin).projectOnVector(vector).add(origin)
- sub(out, copy(out, point), origin)
- const scalar = dot(vector, out) / squaredMagnitude(vector);
- return add(out, scale(out, copy(out, vector), scalar), origin);
- }
- /** Get a vector that is similar to `b` but orthogonal to `a` */
- export function orthogonalize(out: Vec3, a: Vec3, b: Vec3) {
- return normalize(out, cross(out, cross(out, a, b), a));
- }
- const triangleNormalTmpAB = zero();
- const triangleNormalTmpAC = zero();
- /** Calculate normal for the triangle defined by `a`, `b` and `c` */
- export function triangleNormal(out: Vec3, a: Vec3, b: Vec3, c: Vec3) {
- sub(triangleNormalTmpAB, b, a);
- sub(triangleNormalTmpAC, c, a);
- return normalize(out, cross(out, triangleNormalTmpAB, triangleNormalTmpAC));
- }
- export function toString(a: Vec3) {
- return `[${a[0]} ${a[1]} ${a[2]}]`;
- }
- }
- export default Vec3
|