123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480 |
- /**
- * Copyright (c) 2017-2019 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author David Sehnal <david.sehnal@gmail.com>
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
- */
- /*
- * This code has been modified from https://github.com/toji/gl-matrix/,
- * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- */
- import { NumberArray } from '../../../mol-util/type-helpers';
- import { EPSILON } from './common';
- import { Mat4 } from './mat4';
- import { Vec3 } from './vec3';
- interface Mat3 extends Array<number> { [d: number]: number, '@type': 'mat3', length: 9 }
- interface ReadonlyMat3 extends Array<number> { readonly [d: number]: number, '@type': 'mat3', length: 9 }
- function Mat3() {
- return Mat3.zero();
- }
- namespace Mat3 {
- export function zero(): Mat3 {
- // force double backing array by 0.1.
- const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0];
- ret[0] = 0.0;
- return ret as any;
- }
- export function identity(): Mat3 {
- const out = zero();
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- }
- export function setIdentity(mat: Mat3): Mat3 {
- mat[0] = 1;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 1;
- mat[5] = 0;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 1;
- return mat;
- }
- export function toArray<T extends NumberArray>(a: Mat3, out: T, offset: number) {
- out[offset + 0] = a[0];
- out[offset + 1] = a[1];
- out[offset + 2] = a[2];
- out[offset + 3] = a[3];
- out[offset + 4] = a[4];
- out[offset + 5] = a[5];
- out[offset + 6] = a[6];
- out[offset + 7] = a[7];
- out[offset + 8] = a[8];
- return out;
- }
- export function fromArray(a: Mat3, array: NumberArray, offset: number) {
- a[0] = array[offset + 0];
- a[1] = array[offset + 1];
- a[2] = array[offset + 2];
- a[3] = array[offset + 3];
- a[4] = array[offset + 4];
- a[5] = array[offset + 5];
- a[6] = array[offset + 6];
- a[7] = array[offset + 7];
- a[8] = array[offset + 8];
- return a;
- }
- export function fromColumns(out: Mat3, left: Vec3, middle: Vec3, right: Vec3) {
- out[0] = left[0];
- out[1] = left[1];
- out[2] = left[2];
- out[3] = middle[0];
- out[4] = middle[1];
- out[5] = middle[2];
- out[6] = right[0];
- out[7] = right[1];
- out[8] = right[2];
- return out;
- }
- /**
- * Copies the upper-left 3x3 values into the given mat3.
- */
- export function fromMat4(out: Mat3, a: Mat4) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[4];
- out[4] = a[5];
- out[5] = a[6];
- out[6] = a[8];
- out[7] = a[9];
- out[8] = a[10];
- return out;
- }
- export function create(a00: number, a01: number, a02: number, a10: number, a11: number, a12: number, a20: number, a21: number, a22: number): Mat3 {
- const out = zero();
- out[0] = a00;
- out[1] = a01;
- out[2] = a02;
- out[3] = a10;
- out[4] = a11;
- out[5] = a12;
- out[6] = a20;
- out[7] = a21;
- out[8] = a22;
- return out;
- }
- const _id = identity();
- export function isIdentity(m: Mat3, eps?: number) {
- return areEqual(m, _id, typeof eps === 'undefined' ? EPSILON : eps);
- }
- export function hasNaN(m: Mat3) {
- for (let i = 0; i < 9; i++) if (isNaN(m[i])) return true;
- return false;
- }
- /**
- * Creates a new Mat3 initialized with values from an existing matrix
- */
- export function clone(a: Mat3) {
- return copy(zero(), a);
- }
- export function areEqual(a: Mat3, b: Mat3, eps: number) {
- for (let i = 0; i < 9; i++) {
- if (Math.abs(a[i] - b[i]) > eps) return false;
- }
- return true;
- }
- export function setValue(a: Mat3, i: number, j: number, value: number) {
- a[3 * j + i] = value;
- }
- export function getValue(a: Mat3, i: number, j: number) {
- return a[3 * j + i];
- }
- /**
- * Copy the values from one Mat3 to another
- */
- export function copy(out: Mat3, a: Mat3) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- }
- /**
- * Transpose the values of a Mat3
- */
- export function transpose(out: Mat3, a: Mat3) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- const a01 = a[1], a02 = a[2], a12 = a[5];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a01;
- out[5] = a[7];
- out[6] = a02;
- out[7] = a12;
- } else {
- out[0] = a[0];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a[1];
- out[4] = a[4];
- out[5] = a[7];
- out[6] = a[2];
- out[7] = a[5];
- out[8] = a[8];
- }
- return out;
- }
- /**
- * Inverts a Mat3
- */
- export function invert(out: Mat3, a: Mat3): Mat3 {
- const a00 = a[0], a01 = a[1], a02 = a[2];
- const a10 = a[3], a11 = a[4], a12 = a[5];
- const a20 = a[6], a21 = a[7], a22 = a[8];
- const b01 = a22 * a11 - a12 * a21;
- const b11 = -a22 * a10 + a12 * a20;
- const b21 = a21 * a10 - a11 * a20;
- // Calculate the determinant
- let det = a00 * b01 + a01 * b11 + a02 * b21;
- if (!det) {
- console.warn('non-invertible matrix.', a);
- return out;
- }
- det = 1.0 / det;
- out[0] = b01 * det;
- out[1] = (-a22 * a01 + a02 * a21) * det;
- out[2] = (a12 * a01 - a02 * a11) * det;
- out[3] = b11 * det;
- out[4] = (a22 * a00 - a02 * a20) * det;
- out[5] = (-a12 * a00 + a02 * a10) * det;
- out[6] = b21 * det;
- out[7] = (-a21 * a00 + a01 * a20) * det;
- out[8] = (a11 * a00 - a01 * a10) * det;
- return out;
- }
- export function symmtricFromUpper(out: Mat3, a: Mat3) {
- if (out === a) {
- out[3] = a[1];
- out[6] = a[2];
- out[7] = a[5];
- } else {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[1];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[2];
- out[7] = a[5];
- out[8] = a[8];
- }
- return out;
- }
- export function symmtricFromLower(out: Mat3, a: Mat3) {
- if (out === a) {
- out[1] = a[3];
- out[2] = a[6];
- out[5] = a[7];
- } else {
- out[0] = a[0];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[7];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- }
- return out;
- }
- export function determinant(a: Mat3) {
- const a00 = a[0], a01 = a[1], a02 = a[2];
- const a10 = a[3], a11 = a[4], a12 = a[5];
- const a20 = a[6], a21 = a[7], a22 = a[8];
- const b01 = a22 * a11 - a12 * a21;
- const b11 = -a22 * a10 + a12 * a20;
- const b21 = a21 * a10 - a11 * a20;
- // Calculate the determinant
- return a00 * b01 + a01 * b11 + a02 * b21;
- }
- export function trace(a: Mat3) {
- return a[0] + a[4] + a[8];
- }
- export function sub(out: Mat3, a: Mat3, b: Mat3) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- out[3] = a[3] - b[3];
- out[4] = a[4] - b[4];
- out[5] = a[5] - b[5];
- out[6] = a[6] - b[6];
- out[7] = a[7] - b[7];
- out[8] = a[8] - b[8];
- return out;
- }
- export function add(out: Mat3, a: Mat3, b: Mat3) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- out[4] = a[4] + b[4];
- out[5] = a[5] + b[5];
- out[6] = a[6] + b[6];
- out[7] = a[7] + b[7];
- out[8] = a[8] + b[8];
- return out;
- }
- export function mul(out: Mat3, a: Mat3, b: Mat3) {
- const a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8];
- const b00 = b[0], b01 = b[1], b02 = b[2],
- b10 = b[3], b11 = b[4], b12 = b[5],
- b20 = b[6], b21 = b[7], b22 = b[8];
- out[0] = b00 * a00 + b01 * a10 + b02 * a20;
- out[1] = b00 * a01 + b01 * a11 + b02 * a21;
- out[2] = b00 * a02 + b01 * a12 + b02 * a22;
- out[3] = b10 * a00 + b11 * a10 + b12 * a20;
- out[4] = b10 * a01 + b11 * a11 + b12 * a21;
- out[5] = b10 * a02 + b11 * a12 + b12 * a22;
- out[6] = b20 * a00 + b21 * a10 + b22 * a20;
- out[7] = b20 * a01 + b21 * a11 + b22 * a21;
- out[8] = b20 * a02 + b21 * a12 + b22 * a22;
- return out;
- }
- export function subScalar(out: Mat3, a: Mat3, s: number) {
- out[0] = a[0] - s;
- out[1] = a[1] - s;
- out[2] = a[2] - s;
- out[3] = a[3] - s;
- out[4] = a[4] - s;
- out[5] = a[5] - s;
- out[6] = a[6] - s;
- out[7] = a[7] - s;
- out[8] = a[8] - s;
- return out;
- }
- export function addScalar(out: Mat3, a: Mat3, s: number) {
- out[0] = a[0] + s;
- out[1] = a[1] + s;
- out[2] = a[2] + s;
- out[3] = a[3] + s;
- out[4] = a[4] + s;
- out[5] = a[5] + s;
- out[6] = a[6] + s;
- out[7] = a[7] + s;
- out[8] = a[8] + s;
- return out;
- }
- export function mulScalar(out: Mat3, a: Mat3, s: number) {
- out[0] = a[0] * s;
- out[1] = a[1] * s;
- out[2] = a[2] * s;
- out[3] = a[3] * s;
- out[4] = a[4] * s;
- out[5] = a[5] * s;
- out[6] = a[6] * s;
- out[7] = a[7] * s;
- out[8] = a[8] * s;
- return out;
- }
- const piThird = Math.PI / 3;
- const tmpB = zero();
- /**
- * Given a real symmetric 3x3 matrix A, compute the eigenvalues
- *
- * From https://en.wikipedia.org/wiki/Eigenvalue_algorithm#3.C3.973_matrices
- */
- export function symmetricEigenvalues(out: Vec3, a: Mat3) {
- const p1 = a[1] * a[1] + a[2] * a[2] + a[5] * a[5];
- if (p1 === 0) {
- out[0] = a[0];
- out[1] = a[4];
- out[2] = a[8];
- } else {
- const q = trace(a) / 3;
- const a1 = a[0] - q;
- const a2 = a[4] - q;
- const a3 = a[8] - q;
- const p2 = a1 * a1 + a2 * a2 + a3 * a3 + 2 * p1;
- const p = Math.sqrt(p2 / 6);
- mulScalar(tmpB, Identity, q);
- sub(tmpB, a, tmpB);
- mulScalar(tmpB, tmpB, (1 / p));
- const r = determinant(tmpB) / 2;
- // In exact arithmetic for a symmetric matrix -1 <= r <= 1
- // but computation error can leave it slightly outside this range.
- const phi = r <= -1 ? piThird : r >= 1 ?
- 0 : Math.acos(r) / 3;
- // the eigenvalues satisfy eig3 <= eig2 <= eig1
- out[0] = q + 2 * p * Math.cos(phi);
- out[2] = q + 2 * p * Math.cos(phi + (2 * piThird));
- out[1] = 3 * q - out[0] - out[2]; // since trace(A) = eig1 + eig2 + eig3
- }
- return out;
- }
- const tmpR0 = [0.1, 0.0, 0.0] as unknown as Vec3;
- const tmpR1 = [0.1, 0.0, 0.0] as unknown as Vec3;
- const tmpR2 = [0.1, 0.0, 0.0] as unknown as Vec3;
- const tmpR0xR1 = [0.1, 0.0, 0.0] as unknown as Vec3;
- const tmpR0xR2 = [0.1, 0.0, 0.0] as unknown as Vec3;
- const tmpR1xR2 = [0.1, 0.0, 0.0] as unknown as Vec3;
- /**
- * Calculates the eigenvector for the given eigenvalue `e` of matrix `a`
- */
- export function eigenvector(out: Vec3, a: Mat3, e: number) {
- Vec3.set(tmpR0, a[0] - e, a[1], a[2]);
- Vec3.set(tmpR1, a[1], a[4] - e, a[5]);
- Vec3.set(tmpR2, a[2], a[5], a[8] - e);
- Vec3.cross(tmpR0xR1, tmpR0, tmpR1);
- Vec3.cross(tmpR0xR2, tmpR0, tmpR2);
- Vec3.cross(tmpR1xR2, tmpR1, tmpR2);
- const d0 = Vec3.dot(tmpR0xR1, tmpR0xR1);
- const d1 = Vec3.dot(tmpR0xR2, tmpR0xR2);
- const d2 = Vec3.dot(tmpR1xR2, tmpR1xR2);
- let dmax = d0;
- let imax = 0;
- if (d1 > dmax) {
- dmax = d1;
- imax = 1;
- }
- if (d2 > dmax) imax = 2;
- if (imax === 0) {
- Vec3.scale(out, tmpR0xR1, 1 / Math.sqrt(d0));
- } else if (imax === 1) {
- Vec3.scale(out, tmpR0xR2, 1 / Math.sqrt(d1));
- } else {
- Vec3.scale(out, tmpR1xR2, 1 / Math.sqrt(d2));
- }
- return out;
- }
- /**
- * Get matrix to transform directions, e.g. normals
- */
- export function directionTransform(out: Mat3, t: Mat4) {
- fromMat4(out, t);
- invert(out, out);
- transpose(out, out);
- return out;
- }
- export const Identity: ReadonlyMat3 = identity();
- /** Return the Frobenius inner product of two matrices (= dot product of the flattened matrices).
- * Can be used as a measure of similarity between two rotation matrices. */
- export function innerProduct(a: Mat3, b: Mat3) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
- + a[3] * b[3] + a[4] * b[4] + a[5] * b[5]
- + a[6] * b[6] + a[7] * b[7] + a[8] * b[8];
- }
- }
- export { Mat3 };
|