123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- /**
- * Copyright (c) 2017 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author David Sehnal <david.sehnal@gmail.com>
- */
- import { Vec3, Mat4, Mat3 } from '../linear-algebra/3d'
- interface SymmetryOperator {
- readonly name: string,
- readonly hkl: Vec3,
- readonly matrix: Mat4,
- // cache the inverse of the transform
- readonly inverse: Mat4,
- // optimize the identity case
- readonly isIdentity: boolean
- }
- namespace SymmetryOperator {
- export const DefaultName = '1_555'
- export const Default: SymmetryOperator = create(DefaultName, Mat4.identity());
- const RotationEpsilon = 0.0001;
- export function create(name: string, matrix: Mat4, hkl?: Vec3): SymmetryOperator {
- const _hkl = hkl ? Vec3.clone(hkl) : Vec3.zero();
- if (Mat4.isIdentity(matrix)) return { name, matrix, inverse: Mat4.identity(), isIdentity: true, hkl: _hkl };
- if (!Mat4.isRotationAndTranslation(matrix, RotationEpsilon)) throw new Error(`Symmetry operator (${name}) must be a composition of rotation and translation.`);
- return { name, matrix, inverse: Mat4.invert(Mat4.zero(), matrix), isIdentity: false, hkl: _hkl };
- }
- export function checkIfRotationAndTranslation(rot: Mat3, offset: Vec3) {
- const matrix = Mat4.identity();
- for (let i = 0; i < 3; i++) {
- for (let j = 0; j < 3; j++) {
- Mat4.setValue(matrix, i, j, Mat3.getValue(rot, i, j));
- }
- }
- Mat4.setTranslation(matrix, offset);
- return Mat4.isRotationAndTranslation(matrix, RotationEpsilon);
- }
- export function ofRotationAndOffset(name: string, rot: Mat3, offset: Vec3) {
- const t = Mat4.identity();
- for (let i = 0; i < 3; i++) {
- for (let j = 0; j < 3; j++) {
- Mat4.setValue(t, i, j, Mat3.getValue(rot, i, j));
- }
- }
- Mat4.setTranslation(t, offset);
- return create(name, t);
- }
- /** Apply the 1st and then 2nd operator. ( = second.matrix * first.matrix). */
- export function compose(first: SymmetryOperator, second: SymmetryOperator) {
- const matrix = Mat4.mul(Mat4.zero(), second.matrix, first.matrix);
- return create(second.name, matrix, second.hkl);
- }
- export interface CoordinateMapper<T extends number> { (index: T, slot: Vec3): Vec3 }
- export interface ArrayMapping<T extends number> {
- readonly operator: SymmetryOperator,
- readonly invariantPosition: CoordinateMapper<T>,
- readonly position: CoordinateMapper<T>,
- x(index: T): number,
- y(index: T): number,
- z(index: T): number,
- r(index: T): number
- }
- export interface Coordinates { x: ArrayLike<number>, y: ArrayLike<number>, z: ArrayLike<number> }
- export function createMapping<T extends number>(operator: SymmetryOperator, coords: Coordinates, radius: ((index: T) => number) | undefined): ArrayMapping<T> {
- const invariantPosition = SymmetryOperator.createCoordinateMapper(SymmetryOperator.Default, coords);
- const position = operator.isIdentity ? invariantPosition : SymmetryOperator.createCoordinateMapper(operator, coords);
- const { x, y, z } = createProjections(operator, coords);
- return { operator, invariantPosition, position, x, y, z, r: radius ? radius : _zeroRadius };
- }
- export function createCoordinateMapper<T extends number>(t: SymmetryOperator, coords: Coordinates): CoordinateMapper<T> {
- if (t.isIdentity) return identityPosition(coords);
- return generalPosition(t, coords);
- }
- }
- export { SymmetryOperator }
- function _zeroRadius(i: number) { return 0; }
- interface Projections { x(index: number): number, y(index: number): number, z(index: number): number }
- function createProjections(t: SymmetryOperator, coords: SymmetryOperator.Coordinates): Projections {
- if (t.isIdentity) return { x: projectCoord(coords.x), y: projectCoord(coords.y), z: projectCoord(coords.z) };
- return { x: projectX(t, coords), y: projectY(t, coords), z: projectZ(t, coords) };
- }
- function projectCoord(xs: ArrayLike<number>) {
- return (i: number) => xs[i];
- }
- function isW1(m: Mat4) {
- return m[3] === 0 && m[7] === 0 && m[11] === 0 && m[15] === 1;
- }
- function projectX({ matrix: m }: SymmetryOperator, { x: xs, y: ys, z: zs }: SymmetryOperator.Coordinates) {
- const xx = m[0], yy = m[4], zz = m[8], tx = m[12];
- if (isW1(m)) {
- // this should always be the case.
- return (i: number) => xx * xs[i] + yy * ys[i] + zz * zs[i] + tx;
- }
- return (i: number) => {
- const x = xs[i], y = ys[i], z = zs[i], w = (m[3] * x + m[7] * y + m[11] * z + m[15]) || 1.0;
- return (xx * x + yy * y + zz * z + tx) / w;
- }
- }
- function projectY({ matrix: m }: SymmetryOperator, { x: xs, y: ys, z: zs }: SymmetryOperator.Coordinates) {
- const xx = m[1], yy = m[5], zz = m[9], ty = m[13];
- if (isW1(m)) {
- // this should always be the case.
- return (i: number) => xx * xs[i] + yy * ys[i] + zz * zs[i] + ty;
- }
- return (i: number) => {
- const x = xs[i], y = ys[i], z = zs[i], w = (m[3] * x + m[7] * y + m[11] * z + m[15]) || 1.0;
- return (xx * x + yy * y + zz * z + ty) / w;
- }
- }
- function projectZ({ matrix: m }: SymmetryOperator, { x: xs, y: ys, z: zs }: SymmetryOperator.Coordinates) {
- const xx = m[2], yy = m[6], zz = m[10], tz = m[14];
- if (isW1(m)) {
- // this should always be the case.
- return (i: number) => xx * xs[i] + yy * ys[i] + zz * zs[i] + tz;
- }
- return (i: number) => {
- const x = xs[i], y = ys[i], z = zs[i], w = (m[3] * x + m[7] * y + m[11] * z + m[15]) || 1.0;
- return (xx * x + yy * y + zz * z + tz) / w;
- }
- }
- function identityPosition<T extends number>({ x, y, z }: SymmetryOperator.Coordinates): SymmetryOperator.CoordinateMapper<T> {
- return (i, s) => {
- s[0] = x[i];
- s[1] = y[i];
- s[2] = z[i];
- return s;
- }
- }
- function generalPosition<T extends number>({ matrix: m }: SymmetryOperator, { x: xs, y: ys, z: zs }: SymmetryOperator.Coordinates) {
- if (isW1(m)) {
- // this should always be the case.
- return (i: T, r: Vec3): Vec3 => {
- const x = xs[i], y = ys[i], z = zs[i];
- r[0] = m[0] * x + m[4] * y + m[8] * z + m[12];
- r[1] = m[1] * x + m[5] * y + m[9] * z + m[13];
- r[2] = m[2] * x + m[6] * y + m[10] * z + m[14];
- return r;
- }
- }
- return (i: T, r: Vec3): Vec3 => {
- r[0] = xs[i];
- r[1] = ys[i];
- r[2] = zs[i];
- Vec3.transformMat4(r, r, m);
- return r;
- }
- }
|