123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 |
- /**
- * Copyright (c) 2017-2018 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author David Sehnal <david.sehnal@gmail.com>
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
- */
- /*
- * This code has been modified from https://github.com/toji/gl-matrix/,
- * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- */
- /*
- * Quat.fromUnitVec3 has been modified from https://github.com/Jam3/quat-from-unit-vec3,
- * copyright (c) 2015 Jam3. MIT License
- */
- import { Mat3 } from './mat3';
- import { Vec3 } from './vec3';
- import { EPSILON } from './common';
- import { NumberArray } from '../../../mol-util/type-helpers';
- interface Quat extends Array<number> { [d: number]: number, '@type': 'quat', length: 4 }
- interface ReadonlyQuat extends Array<number> { readonly [d: number]: number, '@type': 'quat', length: 4 }
- function Quat() {
- return Quat.zero();
- }
- namespace Quat {
- export function zero(): Quat {
- // force double backing array by 0.1.
- const ret = [0.1, 0, 0, 0];
- ret[0] = 0.0;
- return ret as any;
- }
- export function identity(): Quat {
- const out = zero();
- out[3] = 1;
- return out;
- }
- export function setIdentity(out: Quat) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- }
- export function hasNaN(q: Quat) {
- return isNaN(q[0]) || isNaN(q[1]) || isNaN(q[2]) || isNaN(q[3]);
- }
- export function create(x: number, y: number, z: number, w: number) {
- const out = identity();
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- }
- export function setAxisAngle(out: Quat, axis: Vec3, rad: number) {
- rad = rad * 0.5;
- const s = Math.sin(rad);
- out[0] = s * axis[0];
- out[1] = s * axis[1];
- out[2] = s * axis[2];
- out[3] = Math.cos(rad);
- return out;
- }
- /**
- * Gets the rotation axis and angle for a given
- * quaternion. If a quaternion is created with
- * setAxisAngle, this method will return the same
- * values as providied in the original parameter list
- * OR functionally equivalent values.
- * Example: The quaternion formed by axis [0, 0, 1] and
- * angle -90 is the same as the quaternion formed by
- * [0, 0, 1] and 270. This method favors the latter.
- */
- export function getAxisAngle(out_axis: Vec3, q: Quat) {
- const rad = Math.acos(q[3]) * 2.0;
- const s = Math.sin(rad / 2.0);
- if (s !== 0.0) {
- out_axis[0] = q[0] / s;
- out_axis[1] = q[1] / s;
- out_axis[2] = q[2] / s;
- } else {
- // If s is zero, return any axis (no rotation - axis does not matter)
- out_axis[0] = 1;
- out_axis[1] = 0;
- out_axis[2] = 0;
- }
- return rad;
- }
- export function multiply(out: Quat, a: Quat, b: Quat) {
- const ax = a[0], ay = a[1], az = a[2], aw = a[3];
- const bx = b[0], by = b[1], bz = b[2], bw = b[3];
- out[0] = ax * bw + aw * bx + ay * bz - az * by;
- out[1] = ay * bw + aw * by + az * bx - ax * bz;
- out[2] = az * bw + aw * bz + ax * by - ay * bx;
- out[3] = aw * bw - ax * bx - ay * by - az * bz;
- return out;
- }
- export function rotateX(out: Quat, a: Quat, rad: number) {
- rad *= 0.5;
- const ax = a[0], ay = a[1], az = a[2], aw = a[3];
- const bx = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + aw * bx;
- out[1] = ay * bw + az * bx;
- out[2] = az * bw - ay * bx;
- out[3] = aw * bw - ax * bx;
- return out;
- }
- export function rotateY(out: Quat, a: Quat, rad: number) {
- rad *= 0.5;
- const ax = a[0], ay = a[1], az = a[2], aw = a[3];
- const by = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw - az * by;
- out[1] = ay * bw + aw * by;
- out[2] = az * bw + ax * by;
- out[3] = aw * bw - ay * by;
- return out;
- }
- export function rotateZ(out: Quat, a: Quat, rad: number) {
- rad *= 0.5;
- const ax = a[0], ay = a[1], az = a[2], aw = a[3];
- const bz = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + ay * bz;
- out[1] = ay * bw - ax * bz;
- out[2] = az * bw + aw * bz;
- out[3] = aw * bw - az * bz;
- return out;
- }
- /**
- * Calculates the W component of a quat from the X, Y, and Z components.
- * Assumes that quaternion is 1 unit in length.
- * Any existing W component will be ignored.
- */
- export function calculateW(out: Quat, a: Quat) {
- const x = a[0], y = a[1], z = a[2];
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
- return out;
- }
- /**
- * Performs a spherical linear interpolation between two quat
- */
- export function slerp(out: Quat, a: Quat, b: Quat, t: number) {
- // benchmarks:
- // http://jsperf.com/quaternion-slerp-implementations
- const ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bx = b[0], by = b[1], bz = b[2], bw = b[3];
- let omega, cosom, sinom, scale0, scale1;
- // calc cosine
- cosom = ax * bx + ay * by + az * bz + aw * bw;
- // adjust signs (if necessary)
- if (cosom < 0.0) {
- cosom = -cosom;
- bx = - bx;
- by = - by;
- bz = - bz;
- bw = - bw;
- }
- // calculate coefficients
- if ((1.0 - cosom) > 0.000001) {
- // standard case (slerp)
- omega = Math.acos(cosom);
- sinom = Math.sin(omega);
- scale0 = Math.sin((1.0 - t) * omega) / sinom;
- scale1 = Math.sin(t * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - t;
- scale1 = t;
- }
- // calculate final values
- out[0] = scale0 * ax + scale1 * bx;
- out[1] = scale0 * ay + scale1 * by;
- out[2] = scale0 * az + scale1 * bz;
- out[3] = scale0 * aw + scale1 * bw;
- return out;
- }
- export function invert(out: Quat, a: Quat) {
- const a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
- const dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
- const invDot = dot ? 1.0 / dot : 0;
- // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
- out[0] = -a0 * invDot;
- out[1] = -a1 * invDot;
- out[2] = -a2 * invDot;
- out[3] = a3 * invDot;
- return out;
- }
- /**
- * Calculates the conjugate of a quat
- * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
- */
- export function conjugate(out: Quat, a: Quat) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a[3];
- return out;
- }
- /**
- * Creates a quaternion from the given 3x3 rotation matrix.
- *
- * NOTE: The resultant quaternion is not normalized, so you should be sure
- * to renormalize the quaternion yourself where necessary.
- */
- export function fromMat3(out: Quat, m: Mat3) {
- // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
- // article "Quaternion Calculus and Fast Animation".
- const fTrace = m[0] + m[4] + m[8];
- let fRoot;
- if (fTrace > 0.0) {
- // |w| > 1/2, may as well choose w > 1/2
- fRoot = Math.sqrt(fTrace + 1.0); // 2w
- out[3] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot; // 1/(4w)
- out[0] = (m[5] - m[7]) * fRoot;
- out[1] = (m[6] - m[2]) * fRoot;
- out[2] = (m[1] - m[3]) * fRoot;
- } else {
- // |w| <= 1/2
- let i = 0;
- if (m[4] > m[0]) i = 1;
- if (m[8] > m[i * 3 + i]) i = 2;
- const j = (i + 1) % 3;
- const k = (i + 2) % 3;
- fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);
- out[i] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot;
- out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;
- out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
- out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
- }
- return out;
- }
- const fromUnitVec3Temp = [0, 0, 0] as Vec3;
- /** Quaternion from two normalized unit vectors. */
- export function fromUnitVec3(out: Quat, a: Vec3, b: Vec3) {
- // assumes a and b are normalized
- let r = Vec3.dot(a, b) + 1;
- if (r < EPSILON) {
- // If u and v are exactly opposite, rotate 180 degrees
- // around an arbitrary orthogonal axis. Axis normalisation
- // can happen later, when we normalise the quaternion.
- r = 0;
- if (Math.abs(a[0]) > Math.abs(a[2])) {
- Vec3.set(fromUnitVec3Temp, -a[1], a[0], 0);
- } else {
- Vec3.set(fromUnitVec3Temp, 0, -a[2], a[1]);
- }
- } else {
- // Otherwise, build quaternion the standard way.
- Vec3.cross(fromUnitVec3Temp, a, b);
- }
- out[0] = fromUnitVec3Temp[0];
- out[1] = fromUnitVec3Temp[1];
- out[2] = fromUnitVec3Temp[2];
- out[3] = r;
- normalize(out, out);
- return out;
- }
- export function clone(a: Quat) {
- const out = zero();
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- }
- export function toArray(a: Quat, out: NumberArray, offset: number) {
- out[offset + 0] = a[0];
- out[offset + 1] = a[1];
- out[offset + 2] = a[2];
- out[offset + 3] = a[3];
- return out;
- }
- export function fromArray(a: Quat, array: NumberArray, offset: number) {
- a[0] = array[offset + 0];
- a[1] = array[offset + 1];
- a[2] = array[offset + 2];
- a[3] = array[offset + 3];
- return a;
- }
- export function copy(out: Quat, a: Quat) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- }
- export function set(out: Quat, x: number, y: number, z: number, w: number) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- }
- export function add(out: Quat, a: Quat, b: Quat) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- return out;
- }
- export function normalize(out: Quat, a: Quat) {
- const x = a[0];
- const y = a[1];
- const z = a[2];
- const w = a[3];
- let len = x * x + y * y + z * z + w * w;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- out[0] = x * len;
- out[1] = y * len;
- out[2] = z * len;
- out[3] = w * len;
- }
- return out;
- }
- /**
- * Sets a quaternion to represent the shortest rotation from one
- * vector to another.
- *
- * Both vectors are assumed to be unit length.
- */
- const rotTmpVec3 = [0, 0, 0] as Vec3;
- const rotTmpVec3UnitX = [1, 0, 0] as Vec3;
- const rotTmpVec3UnitY = [0, 1, 0] as Vec3;
- export function rotationTo(out: Quat, a: Vec3, b: Vec3) {
- const dot = Vec3.dot(a, b);
- if (dot < -0.999999) {
- Vec3.cross(rotTmpVec3, rotTmpVec3UnitX, a);
- if (Vec3.magnitude(rotTmpVec3) < 0.000001)
- Vec3.cross(rotTmpVec3, rotTmpVec3UnitY, a);
- Vec3.normalize(rotTmpVec3, rotTmpVec3);
- setAxisAngle(out, rotTmpVec3, Math.PI);
- return out;
- } else if (dot > 0.999999) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- } else {
- Vec3.cross(rotTmpVec3, a, b);
- out[0] = rotTmpVec3[0];
- out[1] = rotTmpVec3[1];
- out[2] = rotTmpVec3[2];
- out[3] = 1 + dot;
- return normalize(out, out);
- }
- }
- /**
- * Performs a spherical linear interpolation with two control points
- */
- const sqlerpTemp1 = zero();
- const sqlerpTemp2 = zero();
- export function sqlerp(out: Quat, a: Quat, b: Quat, c: Quat, d: Quat, t: number) {
- slerp(sqlerpTemp1, a, d, t);
- slerp(sqlerpTemp2, b, c, t);
- slerp(out, sqlerpTemp1, sqlerpTemp2, 2 * t * (1 - t));
- return out;
- }
- /**
- * Sets the specified quaternion with values corresponding to the given
- * axes. Each axis is a vec3 and is expected to be unit length and
- * perpendicular to all other specified axes.
- */
- const axesTmpMat = [0, 0, 0, 0, 0, 0, 0, 0, 0] as Mat3;
- export function setAxes(out: Quat, view: Vec3, right: Vec3, up: Vec3) {
- axesTmpMat[0] = right[0];
- axesTmpMat[3] = right[1];
- axesTmpMat[6] = right[2];
- axesTmpMat[1] = up[0];
- axesTmpMat[4] = up[1];
- axesTmpMat[7] = up[2];
- axesTmpMat[2] = -view[0];
- axesTmpMat[5] = -view[1];
- axesTmpMat[8] = -view[2];
- return normalize(out, fromMat3(out, axesTmpMat));
- }
- export function toString(a: Quat, precision?: number) {
- return `[${a[0].toPrecision(precision)} ${a[1].toPrecision(precision)} ${a[2].toPrecision(precision)} ${a[3].toPrecision(precision)}]`;
- }
- export const Identity: ReadonlyQuat = identity();
- }
- export { Quat };
|