123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- /**
- * Copyright (c) 2019 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
- *
- * adapted from https://github.com/internalfx/distinct-colors (ISC License Copyright (c) 2015, InternalFX Inc.)
- * which is heavily inspired by http://tools.medialab.sciences-po.fr/iwanthue/
- */
- import { Lab } from './spaces/lab';
- import { Hcl } from './spaces/hcl';
- import { deepClone } from '../../mol-util/object';
- import { deepEqual } from '../../mol-util';
- import { arraySum } from '../../mol-util/array';
- import { ParamDefinition as PD } from '../../mol-util/param-definition';
- import { ColorNames } from './names';
- export const DistinctColorsParams = {
- hue: PD.Interval([1, 360], { min: 0, max: 360, step: 1 }),
- chroma: PD.Interval([40, 70], { min: 0, max: 100, step: 1 }),
- luminance: PD.Interval([15, 85], { min: 0, max: 100, step: 1 }),
- clusteringStepCount: PD.Numeric(50, { min: 10, max: 200, step: 1 }, { isHidden: true }),
- minSampleCount: PD.Numeric(800, { min: 100, max: 5000, step: 100 }, { isHidden: true })
- };
- export type DistinctColorsParams = typeof DistinctColorsParams
- export type DistinctColorsProps = PD.Values<typeof DistinctColorsParams>
- function distance(colorA: Lab, colorB: Lab) {
- return Math.sqrt(
- Math.pow(Math.abs(colorA[0] - colorB[0]), 2) +
- Math.pow(Math.abs(colorA[1] - colorB[1]), 2) +
- Math.pow(Math.abs(colorA[2] - colorB[2]), 2)
- );
- }
- const LabTolerance = 2;
- const tmpCheckColorHcl = [0, 0, 0] as Hcl;
- const tmpCheckColorLab = [0, 0, 0] as Lab;
- function checkColor(lab: Lab, props: DistinctColorsProps) {
- Lab.toHcl(tmpCheckColorHcl, lab);
- // roundtrip to RGB for conversion tolerance testing
- Lab.fromColor(tmpCheckColorLab, Lab.toColor(lab));
- return (
- tmpCheckColorHcl[0] >= props.hue[0] &&
- tmpCheckColorHcl[0] <= props.hue[1] &&
- tmpCheckColorHcl[1] >= props.chroma[0] &&
- tmpCheckColorHcl[1] <= props.chroma[1] &&
- tmpCheckColorHcl[2] >= props.luminance[0] &&
- tmpCheckColorHcl[2] <= props.luminance[1] &&
- tmpCheckColorLab[0] >= (lab[0] - LabTolerance) &&
- tmpCheckColorLab[0] <= (lab[0] + LabTolerance) &&
- tmpCheckColorLab[1] >= (lab[1] - LabTolerance) &&
- tmpCheckColorLab[1] <= (lab[1] + LabTolerance) &&
- tmpCheckColorLab[2] >= (lab[2] - LabTolerance) &&
- tmpCheckColorLab[2] <= (lab[2] + LabTolerance)
- );
- }
- function sortByContrast(colors: Lab[]) {
- const unsortedColors = colors.slice(0);
- const sortedColors = [unsortedColors.shift()!];
- while (unsortedColors.length > 0) {
- const lastColor = sortedColors[sortedColors.length - 1];
- let nearest = 0;
- let maxDist = Number.MIN_SAFE_INTEGER;
- for (let i = 0; i < unsortedColors.length; ++i) {
- const dist = distance(lastColor, unsortedColors[i]);
- if (dist > maxDist) {
- maxDist = dist;
- nearest = i;
- }
- }
- sortedColors.push(unsortedColors.splice(nearest, 1)[0]);
- }
- return sortedColors;
- }
- function getSamples(count: number, p: DistinctColorsProps) {
- const samples = new Map<string, Lab>();
- const rangeDivider = Math.cbrt(count) * 1.001;
- const hStep = (p.hue[1] - p.hue[0]) / rangeDivider;
- const cStep = (p.chroma[1] - p.chroma[0]) / rangeDivider;
- const lStep = (p.luminance[1] - p.luminance[0]) / rangeDivider;
- for (let h = p.hue[0]; h <= p.hue[1]; h += hStep) {
- for (let c = p.chroma[0]; c <= p.chroma[1]; c += cStep) {
- for (let l = p.luminance[0]; l <= p.luminance[1]; l += lStep) {
- const lab = Lab.fromHcl(Lab(), Hcl.create(h, c, l));
- if (checkColor(lab, p)) samples.set(lab.toString(), lab);
- }
- }
- }
- return Array.from(samples.values());
- }
- /**
- * Create a list of visually distinct colors
- */
- export function distinctColors(count: number, props: Partial<DistinctColorsProps> = {}) {
- const p = { ...PD.getDefaultValues(DistinctColorsParams), ...props };
- if (count <= 0) return [];
- const samples = getSamples(Math.max(p.minSampleCount, count * 5), p);
- if (samples.length < count) {
- console.warn('Not enough samples to generate distinct colors, increase sample count.');
- return (new Array(count)).fill(ColorNames.lightgrey);
- }
- const colors: Lab[] = [];
- const zonesProto: (Lab[])[] = [];
- const sliceSize = Math.floor(samples.length / count);
- for (let i = 0; i < samples.length; i += sliceSize) {
- colors.push(samples[i]);
- zonesProto.push([]);
- if (colors.length >= count) break;
- }
- for (let step = 1; step <= p.clusteringStepCount; ++step) {
- const zones = deepClone(zonesProto);
- // Find closest color for each sample
- for (let i = 0; i < samples.length; ++i) {
- let minDist = Number.MAX_SAFE_INTEGER;
- let nearest = 0;
- for (let j = 0; j < colors.length; j++) {
- const dist = distance(samples[i], colors[j]);
- if (dist < minDist) {
- minDist = dist;
- nearest = j;
- }
- }
- zones[nearest].push(samples[i]);
- }
- const lastColors = deepClone(colors);
- for (let i = 0; i < zones.length; ++i) {
- const zone = zones[i];
- const size = zone.length;
- const Ls: number[] = [];
- const As: number[] = [];
- const Bs: number[] = [];
- for (const sample of zone) {
- Ls.push(sample[0]);
- As.push(sample[1]);
- Bs.push(sample[2]);
- }
- const lAvg = arraySum(Ls) / size;
- const aAvg = arraySum(As) / size;
- const bAvg = arraySum(Bs) / size;
- colors[i] = [lAvg, aAvg, bAvg] as Lab;
- }
- if (deepEqual(lastColors, colors)) break;
- }
- return sortByContrast(colors).map(c => Lab.toColor(c));
- }
|