123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269 |
- /**
- * Copyright (c) 2017-2020 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author David Sehnal <david.sehnal@gmail.com>
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
- */
- /*
- * This code has been modified from https://github.com/toji/gl-matrix/,
- * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- */
- import { EPSILON, equalEps } from './common';
- import { Vec3 } from './vec3';
- import { Quat } from './quat';
- import { degToRad } from '../../misc';
- import { NumberArray } from '../../../mol-util/type-helpers';
- import { Mat3 } from './mat3';
- import { Euler } from './euler';
- interface Mat4 extends Array<number> { [d: number]: number, '@type': 'mat4', length: 16 }
- interface ReadonlyMat4 extends Array<number> { readonly [d: number]: number, '@type': 'mat4', length: 16 }
- function Mat4() {
- return Mat4.zero();
- }
- /**
- * Stores a 4x4 matrix in a column major (j * 4 + i indexing) format.
- */
- namespace Mat4 {
- export function zero(): Mat4 {
- // force double backing array by 0.1.
- const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
- ret[0] = 0.0;
- return ret as any;
- }
- export function identity(): Mat4 {
- const out = zero();
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- export function setIdentity(mat: Mat4): Mat4 {
- mat[0] = 1;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = 1;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = 1;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- }
- export function setZero(mat: Mat4): Mat4 {
- for (let i = 0; i < 16; i++) mat[i] = 0;
- return mat;
- }
- export function ofRows(rows: number[][]): Mat4 {
- const out = zero();
- for (let i = 0; i < 4; i++) {
- const r = rows[i];
- for (let j = 0; j < 4; j++) {
- out[4 * j + i] = r[j];
- }
- }
- return out;
- }
- const _id = identity();
- export function isIdentity(m: Mat4, eps?: number) {
- return areEqual(m, _id, typeof eps === 'undefined' ? EPSILON : eps);
- }
- export function hasNaN(m: Mat4) {
- for (let i = 0; i < 16; i++) if (isNaN(m[i])) return true;
- return false;
- }
- export function areEqual(a: Mat4, b: Mat4, eps: number) {
- for (let i = 0; i < 16; i++) {
- if (Math.abs(a[i] - b[i]) > eps) return false;
- }
- return true;
- }
- export function setValue(a: Mat4, i: number, j: number, value: number) {
- a[4 * j + i] = value;
- }
- export function getValue(a: Mat4, i: number, j: number) {
- return a[4 * j + i];
- }
- export function toArray<T extends NumberArray>(a: Mat4, out: T, offset: number) {
- out[offset + 0] = a[0];
- out[offset + 1] = a[1];
- out[offset + 2] = a[2];
- out[offset + 3] = a[3];
- out[offset + 4] = a[4];
- out[offset + 5] = a[5];
- out[offset + 6] = a[6];
- out[offset + 7] = a[7];
- out[offset + 8] = a[8];
- out[offset + 9] = a[9];
- out[offset + 10] = a[10];
- out[offset + 11] = a[11];
- out[offset + 12] = a[12];
- out[offset + 13] = a[13];
- out[offset + 14] = a[14];
- out[offset + 15] = a[15];
- return out;
- }
- export function fromArray(a: Mat4, array: NumberArray, offset: number) {
- a[0] = array[offset + 0];
- a[1] = array[offset + 1];
- a[2] = array[offset + 2];
- a[3] = array[offset + 3];
- a[4] = array[offset + 4];
- a[5] = array[offset + 5];
- a[6] = array[offset + 6];
- a[7] = array[offset + 7];
- a[8] = array[offset + 8];
- a[9] = array[offset + 9];
- a[10] = array[offset + 10];
- a[11] = array[offset + 11];
- a[12] = array[offset + 12];
- a[13] = array[offset + 13];
- a[14] = array[offset + 14];
- a[15] = array[offset + 15];
- return a;
- }
- export function fromBasis(a: Mat4, x: Vec3, y: Vec3, z: Vec3) {
- setZero(a);
- setValue(a, 0, 0, x[0]);
- setValue(a, 1, 0, x[1]);
- setValue(a, 2, 0, x[2]);
- setValue(a, 0, 1, y[0]);
- setValue(a, 1, 1, y[1]);
- setValue(a, 2, 1, y[2]);
- setValue(a, 0, 2, z[0]);
- setValue(a, 1, 2, z[1]);
- setValue(a, 2, 2, z[2]);
- setValue(a, 3, 3, 1);
- return a;
- }
- export function copy(out: Mat4, a: Mat4) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- }
- export function clone(a: Mat4) {
- return copy(zero(), a);
- }
- /**
- * Returns the translation vector component of a transformation matrix.
- */
- export function getTranslation(out: Vec3, mat: Mat4) {
- out[0] = mat[12];
- out[1] = mat[13];
- out[2] = mat[14];
- return out;
- }
- /**
- * Returns the scaling factor component of a transformation matrix.
- */
- export function getScaling(out: Vec3, mat: Mat4) {
- const m11 = mat[0];
- const m12 = mat[1];
- const m13 = mat[2];
- const m21 = mat[4];
- const m22 = mat[5];
- const m23 = mat[6];
- const m31 = mat[8];
- const m32 = mat[9];
- const m33 = mat[10];
- out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
- out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
- out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
- return out;
- }
- /**
- * Returns a quaternion representing the rotational component of a transformation matrix.
- */
- export function getRotation(out: Quat, mat: Mat4) {
- // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
- const trace = mat[0] + mat[5] + mat[10];
- let S = 0;
- if (trace > 0) {
- S = Math.sqrt(trace + 1.0) * 2;
- out[3] = 0.25 * S;
- out[0] = (mat[6] - mat[9]) / S;
- out[1] = (mat[8] - mat[2]) / S;
- out[2] = (mat[1] - mat[4]) / S;
- } else if ((mat[0] > mat[5]) && (mat[0] > mat[10])) {
- S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2;
- out[3] = (mat[6] - mat[9]) / S;
- out[0] = 0.25 * S;
- out[1] = (mat[1] + mat[4]) / S;
- out[2] = (mat[8] + mat[2]) / S;
- } else if (mat[5] > mat[10]) {
- S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2;
- out[3] = (mat[8] - mat[2]) / S;
- out[0] = (mat[1] + mat[4]) / S;
- out[1] = 0.25 * S;
- out[2] = (mat[6] + mat[9]) / S;
- } else {
- S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2;
- out[3] = (mat[1] - mat[4]) / S;
- out[0] = (mat[8] + mat[2]) / S;
- out[1] = (mat[6] + mat[9]) / S;
- out[2] = 0.25 * S;
- }
- return out;
- }
- export function extractRotation(out: Mat4, mat: Mat4) {
- const scaleX = 1 / Math.sqrt(mat[0] * mat[0] + mat[1] * mat[1] + mat[2] * mat[2]);
- const scaleY = 1 / Math.sqrt(mat[4] * mat[4] + mat[5] * mat[5] + mat[6] * mat[6]);
- const scaleZ = 1 / Math.sqrt(mat[8] * mat[8] + mat[9] * mat[9] + mat[10] * mat[10]);
- out[0] = mat[0] * scaleX;
- out[1] = mat[1] * scaleX;
- out[2] = mat[2] * scaleX;
- out[3] = 0;
- out[4] = mat[4] * scaleY;
- out[5] = mat[5] * scaleY;
- out[6] = mat[6] * scaleY;
- out[7] = 0;
- out[8] = mat[8] * scaleZ;
- out[9] = mat[9] * scaleZ;
- out[10] = mat[10] * scaleZ;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- export function transpose(out: Mat4, a: Mat4) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- const a01 = a[1], a02 = a[2], a03 = a[3];
- const a12 = a[6], a13 = a[7];
- const a23 = a[11];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a01;
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a02;
- out[9] = a12;
- out[11] = a[14];
- out[12] = a03;
- out[13] = a13;
- out[14] = a23;
- } else {
- out[0] = a[0];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a[1];
- out[5] = a[5];
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a[2];
- out[9] = a[6];
- out[10] = a[10];
- out[11] = a[14];
- out[12] = a[3];
- out[13] = a[7];
- out[14] = a[11];
- out[15] = a[15];
- }
- return out;
- }
- export function tryInvert(out: Mat4, a: Mat4) {
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- if (!det) {
- return false;
- }
- det = 1.0 / det;
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
- out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
- out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
- out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
- out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
- out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
- out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
- return true;
- }
- export function invert(out: Mat4, a: Mat4) {
- if (!tryInvert(out, a)) {
- console.warn('non-invertible matrix.', a);
- }
- return out;
- }
- export function mul(out: Mat4, a: Mat4, b: Mat4) {
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- // Cache only the current line of the second matrix
- let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
- out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
- out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
- out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- return out;
- }
- /**
- * Like `mul` but with offsets into arrays
- */
- export function mulOffset(out: NumberArray, a: NumberArray, b: NumberArray, oOut: number, oA: number, oB: number) {
- const a00 = a[0 + oA], a01 = a[1 + oA], a02 = a[2 + oA], a03 = a[3 + oA],
- a10 = a[4 + oA], a11 = a[5 + oA], a12 = a[6 + oA], a13 = a[7 + oA],
- a20 = a[8 + oA], a21 = a[9 + oA], a22 = a[10 + oA], a23 = a[11 + oA],
- a30 = a[12 + oA], a31 = a[13 + oA], a32 = a[14 + oA], a33 = a[15 + oA];
- // Cache only the current line of the second matrix
- let b0 = b[0 + oB], b1 = b[1 + oB], b2 = b[2 + oB], b3 = b[3 + oB];
- out[0 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[1 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[2 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[3 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[4 + oB]; b1 = b[5 + oB]; b2 = b[6 + oB]; b3 = b[7 + oB];
- out[4 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[5 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[6 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[7 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[8 + oB]; b1 = b[9 + oB]; b2 = b[10 + oB]; b3 = b[11 + oB];
- out[8 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[9 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[10 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[11 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[12 + oB]; b1 = b[13 + oB]; b2 = b[14 + oB]; b3 = b[15 + oB];
- out[12 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[13 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[14 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[15 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- return out;
- }
- export function mul3(out: Mat4, a: Mat4, b: Mat4, c: Mat4) {
- return mul(out, mul(out, a, b), c);
- }
- /** Translate a Mat4 by the given Vec3 */
- export function translate(out: Mat4, a: Mat4, v: Vec3) {
- const x = v[0], y = v[1], z = v[2];
- let a00: number, a01: number, a02: number, a03: number,
- a10: number, a11: number, a12: number, a13: number,
- a20: number, a21: number, a22: number, a23: number;
- if (a === out) {
- out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
- out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
- out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
- out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
- } else {
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
- out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
- out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
- out[12] = a00 * x + a10 * y + a20 * z + a[12];
- out[13] = a01 * x + a11 * y + a21 * z + a[13];
- out[14] = a02 * x + a12 * y + a22 * z + a[14];
- out[15] = a03 * x + a13 * y + a23 * z + a[15];
- }
- return out;
- }
- export function fromTranslation(out: Mat4, v: Vec3) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- }
- export function setTranslation(out: Mat4, v: Vec3) {
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- return out;
- }
- /**
- * Sets the specified quaternion with values corresponding to the given
- * axes. Each axis is a vec3 and is expected to be unit length and
- * perpendicular to all other specified axes.
- */
- export function setAxes(out: Mat4, view: Vec3, right: Vec3, up: Vec3) {
- out[0] = right[0];
- out[4] = right[1];
- out[8] = right[2];
- out[1] = up[0];
- out[5] = up[1];
- out[9] = up[2];
- out[2] = view[0];
- out[6] = view[1];
- out[10] = view[2];
- return out;
- }
- export function rotate(out: Mat4, a: Mat4, rad: number, axis: Vec3) {
- let x = axis[0], y = axis[1], z = axis[2];
- let len = Math.sqrt(x * x + y * y + z * z);
- if (Math.abs(len) < EPSILON) {
- return identity();
- }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- const s = Math.sin(rad);
- const c = Math.cos(rad);
- const t = 1 - c;
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
- const a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
- const a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
- // Construct the elements of the rotation matrix
- const b00 = x * x * t + c, b01 = y * x * t + z * s, b02 = z * x * t - y * s;
- const b10 = x * y * t - z * s, b11 = y * y * t + c, b12 = z * y * t + x * s;
- const b20 = x * z * t + y * s, b21 = y * z * t - x * s, b22 = z * z * t + c;
- // Perform rotation-specific matrix multiplication
- out[0] = a00 * b00 + a10 * b01 + a20 * b02;
- out[1] = a01 * b00 + a11 * b01 + a21 * b02;
- out[2] = a02 * b00 + a12 * b01 + a22 * b02;
- out[3] = a03 * b00 + a13 * b01 + a23 * b02;
- out[4] = a00 * b10 + a10 * b11 + a20 * b12;
- out[5] = a01 * b10 + a11 * b11 + a21 * b12;
- out[6] = a02 * b10 + a12 * b11 + a22 * b12;
- out[7] = a03 * b10 + a13 * b11 + a23 * b12;
- out[8] = a00 * b20 + a10 * b21 + a20 * b22;
- out[9] = a01 * b20 + a11 * b21 + a21 * b22;
- out[10] = a02 * b20 + a12 * b21 + a22 * b22;
- out[11] = a03 * b20 + a13 * b21 + a23 * b22;
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- return out;
- }
- export function fromRotation(out: Mat4, rad: number, axis: Vec3) {
- let x = axis[0], y = axis[1], z = axis[2];
- let len = Math.sqrt(x * x + y * y + z * z);
- if (Math.abs(len) < EPSILON) { return setIdentity(out); }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- const s = Math.sin(rad);
- const c = Math.cos(rad);
- const t = 1 - c;
- // Perform rotation-specific matrix multiplication
- out[0] = x * x * t + c;
- out[1] = y * x * t + z * s;
- out[2] = z * x * t - y * s;
- out[3] = 0;
- out[4] = x * y * t - z * s;
- out[5] = y * y * t + c;
- out[6] = z * y * t + x * s;
- out[7] = 0;
- out[8] = x * z * t + y * s;
- out[9] = y * z * t - x * s;
- out[10] = z * z * t + c;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- export function scale(out: Mat4, a: Mat4, v: Vec3) {
- const x = v[0], y = v[1], z = v[2];
- out[0] = a[0] * x;
- out[1] = a[1] * x;
- out[2] = a[2] * x;
- out[3] = a[3] * x;
- out[4] = a[4] * y;
- out[5] = a[5] * y;
- out[6] = a[6] * y;
- out[7] = a[7] * y;
- out[8] = a[8] * z;
- out[9] = a[9] * z;
- out[10] = a[10] * z;
- out[11] = a[11] * z;
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- }
- export function scaleUniformly(out: Mat4, a: Mat4, scale: number) {
- out[0] = a[0] * scale;
- out[1] = a[1] * scale;
- out[2] = a[2] * scale;
- out[3] = a[3] * scale;
- out[4] = a[4] * scale;
- out[5] = a[5] * scale;
- out[6] = a[6] * scale;
- out[7] = a[7] * scale;
- out[8] = a[8] * scale;
- out[9] = a[9] * scale;
- out[10] = a[10] * scale;
- out[11] = a[11] * scale;
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- }
- export function fromScaling(out: Mat4, v: Vec3) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = v[1];
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = v[2];
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- export function fromUniformScaling(out: Mat4, scale: number) {
- out[0] = scale;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = scale;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = scale;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Copies the mat3 into upper-left 3x3 values.
- */
- export function fromMat3(out: Mat4, a: Mat3) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[4] = a[3];
- out[5] = a[4];
- out[6] = a[5];
- out[8] = a[6];
- out[9] = a[7];
- out[10] = a[8];
- return out;
- }
- export function compose(out: Mat4, position: Vec3, quaternion: Quat, scale: Vec3) {
- const [x, y, z, w] = quaternion;
- const x2 = x + x, y2 = y + y, z2 = z + z;
- const xx = x * x2, xy = x * y2, xz = x * z2;
- const yy = y * y2, yz = y * z2, zz = z * z2;
- const wx = w * x2, wy = w * y2, wz = w * z2;
- const [sx, sy, sz] = scale;
- out[0] = (1 - (yy + zz)) * sx;
- out[1] = (xy + wz) * sx;
- out[2] = (xz - wy) * sx;
- out[3] = 0;
- out[4] = (xy - wz) * sy;
- out[5] = (1 - (xx + zz)) * sy;
- out[6] = (yz + wx) * sy;
- out[7] = 0;
- out[8] = (xz + wy) * sz;
- out[9] = (yz - wx) * sz;
- out[10] = (1 - (xx + yy)) * sz;
- out[11] = 0;
- out[12] = position[0];
- out[13] = position[1];
- out[14] = position[2];
- out[15] = 1;
- return out;
- }
- const _v3 = [0, 0, 0] as unknown as Vec3;
- const _m4 = zero();
- export function decompose(m: Mat4, position: Vec3, quaternion: Quat, scale: Vec3) {
- let sx = Vec3.magnitude(Vec3.set(_v3, m[0], m[1], m[2]));
- const sy = Vec3.magnitude(Vec3.set(_v3, m[4], m[5], m[6]));
- const sz = Vec3.magnitude(Vec3.set(_v3, m[8], m[9], m[10]));
- // if determine is negative, we need to invert one scale
- const det = determinant(m);
- if (det < 0) sx = -sx;
- position[0] = m[12];
- position[1] = m[13];
- position[2] = m[14];
- // scale the rotation part
- copy(_m4, m);
- const invSX = 1 / sx;
- const invSY = 1 / sy;
- const invSZ = 1 / sz;
- _m4[0] *= invSX;
- _m4[1] *= invSX;
- _m4[2] *= invSX;
- _m4[4] *= invSY;
- _m4[5] *= invSY;
- _m4[6] *= invSY;
- _m4[8] *= invSZ;
- _m4[9] *= invSZ;
- _m4[10] *= invSZ;
- getRotation(quaternion, _m4);
- scale[0] = sx;
- scale[1] = sy;
- scale[2] = sz;
- return m;
- }
- export function makeTable(m: Mat4) {
- let ret = '';
- for (let i = 0; i < 4; i++) {
- for (let j = 0; j < 4; j++) {
- ret += m[4 * j + i].toString();
- if (j < 3) ret += ' ';
- }
- if (i < 3) ret += '\n';
- }
- return ret;
- }
- export function determinant(a: Mat4) {
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- }
- /**
- * Check if the matrix has the form
- * [ Rotation Translation ]
- * [ 0 1 ]
- *
- * Allows for improper rotations
- */
- export function isRotationAndTranslation(a: Mat4, eps?: number) {
- return _isRotationAndTranslation(a, typeof eps !== 'undefined' ? eps : EPSILON);
- }
- function _isRotationAndTranslation(a: Mat4, eps: number) {
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a33 = a[15];
- if (!equalEps(a33, 1, eps) || !equalEps(a03, 0, eps) || !equalEps(a13, 0, eps) || !equalEps(a23, 0, eps)) {
- return false;
- }
- // use `abs` to allow for improper rotations
- const det3x3 = Math.abs(a00 * (a11 * a22 - a12 * a21) - a01 * (a10 * a22 - a12 * a20) + a02 * (a10 * a21 - a11 * a20));
- if (!equalEps(det3x3, 1, eps)) {
- return false;
- }
- return true;
- }
- /**
- * Check if the matrix has only translation and uniform scaling
- * [ S 0 0 X ]
- * [ 0 S 0 Y ]
- * [ 0 0 S Z ]
- * [ 0 0 0 1 ]
- */
- export function isTranslationAndUniformScaling(a: Mat4, eps?: number) {
- return _isTranslationAndUniformScaling(a, typeof eps !== 'undefined' ? eps : EPSILON);
- }
- function _isTranslationAndUniformScaling(a: Mat4, eps: number) {
- const a00 = a[0];
- return (
- // 0 base scaling
- equalEps(a[1], 0, eps) &&
- equalEps(a[2], 0, eps) &&
- equalEps(a[3], 0, eps) &&
- equalEps(a[4], 0, eps) &&
- equalEps(a[5], a00, eps) &&
- equalEps(a[6], 0, eps) &&
- equalEps(a[7], 0, eps) &&
- equalEps(a[8], 0, eps) &&
- equalEps(a[9], 0, eps) &&
- equalEps(a[10], a00, eps) &&
- equalEps(a[11], 0, eps) &&
- // 12, 13, 14 translation can be anything
- equalEps(a[15], 1, eps)
- );
- }
- export function fromQuat(out: Mat4, q: Quat) {
- const x = q[0], y = q[1], z = q[2], w = q[3];
- const x2 = x + x;
- const y2 = y + y;
- const z2 = z + z;
- const xx = x * x2;
- const yx = y * x2;
- const yy = y * y2;
- const zx = z * x2;
- const zy = z * y2;
- const zz = z * z2;
- const wx = w * x2;
- const wy = w * y2;
- const wz = w * z2;
- out[0] = 1 - yy - zz;
- out[1] = yx + wz;
- out[2] = zx - wy;
- out[3] = 0;
- out[4] = yx - wz;
- out[5] = 1 - xx - zz;
- out[6] = zy + wx;
- out[7] = 0;
- out[8] = zx + wy;
- out[9] = zy - wx;
- out[10] = 1 - xx - yy;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- export function fromEuler(out: Mat4, euler: Euler, order: Euler.Order) {
- const x = euler[0], y = euler[1], z = euler[2];
- const a = Math.cos(x), b = Math.sin(x);
- const c = Math.cos(y), d = Math.sin(y);
- const e = Math.cos(z), f = Math.sin(z);
- if (order === 'XYZ') {
- const ae = a * e, af = a * f, be = b * e, bf = b * f;
- out[0] = c * e;
- out[4] = - c * f;
- out[8] = d;
- out[1] = af + be * d;
- out[5] = ae - bf * d;
- out[9] = - b * c;
- out[2] = bf - ae * d;
- out[6] = be + af * d;
- out[10] = a * c;
- } else if (order === 'YXZ') {
- const ce = c * e, cf = c * f, de = d * e, df = d * f;
- out[0] = ce + df * b;
- out[4] = de * b - cf;
- out[8] = a * d;
- out[1] = a * f;
- out[5] = a * e;
- out[9] = - b;
- out[2] = cf * b - de;
- out[6] = df + ce * b;
- out[10] = a * c;
- } else if (order === 'ZXY') {
- const ce = c * e, cf = c * f, de = d * e, df = d * f;
- out[0] = ce - df * b;
- out[4] = - a * f;
- out[8] = de + cf * b;
- out[1] = cf + de * b;
- out[5] = a * e;
- out[9] = df - ce * b;
- out[2] = - a * d;
- out[6] = b;
- out[10] = a * c;
- } else if (order === 'ZYX') {
- const ae = a * e, af = a * f, be = b * e, bf = b * f;
- out[0] = c * e;
- out[4] = be * d - af;
- out[8] = ae * d + bf;
- out[1] = c * f;
- out[5] = bf * d + ae;
- out[9] = af * d - be;
- out[2] = - d;
- out[6] = b * c;
- out[10] = a * c;
- } else if (order === 'YZX') {
- const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
- out[0] = c * e;
- out[4] = bd - ac * f;
- out[8] = bc * f + ad;
- out[1] = f;
- out[5] = a * e;
- out[9] = - b * e;
- out[2] = - d * e;
- out[6] = ad * f + bc;
- out[10] = ac - bd * f;
- } else if (order === 'XZY') {
- const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
- out[0] = c * e;
- out[4] = - f;
- out[8] = d * e;
- out[1] = ac * f + bd;
- out[5] = a * e;
- out[9] = ad * f - bc;
- out[2] = bc * f - ad;
- out[6] = b * e;
- out[10] = bd * f + ac;
- }
- // bottom row
- out[3] = 0;
- out[7] = 0;
- out[11] = 0;
- // last column
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Generates a perspective projection (frustum) matrix with the given bounds
- */
- export function perspective(out: Mat4, left: number, right: number, top: number, bottom: number, near: number, far: number) {
- const x = 2 * near / (right - left);
- const y = 2 * near / (top - bottom);
- const a = (right + left) / (right - left);
- const b = (top + bottom) / (top - bottom);
- const c = -(far + near) / (far - near);
- const d = -2 * far * near / (far - near);
- out[0] = x;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = y;
- out[6] = 0;
- out[7] = 0;
- out[8] = a;
- out[9] = b;
- out[10] = c;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = d;
- out[15] = 0;
- return out;
- }
- /**
- * Generates a orthogonal projection matrix with the given bounds
- */
- export function ortho(out: Mat4, left: number, right: number, top: number, bottom: number, near: number, far: number) {
- const w = 1.0 / (right - left);
- const h = 1.0 / (top - bottom);
- const p = 1.0 / (far - near);
- const x = (right + left) * w;
- const y = (top + bottom) * h;
- const z = (far + near) * p;
- out[0] = 2 * w;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 2 * h;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = -2 * p;
- out[11] = 0;
- out[12] = -x;
- out[13] = -y;
- out[14] = -z;
- out[15] = 1;
- return out;
- }
- /**
- * Generates a look-at matrix with the given eye position, focal point, and up axis
- */
- export function lookAt(out: Mat4, eye: Vec3, center: Vec3, up: Vec3) {
- let x0, x1, x2, y0, y1, y2, z0, z1, z2, len;
- const eyex = eye[0];
- const eyey = eye[1];
- const eyez = eye[2];
- const upx = up[0];
- const upy = up[1];
- const upz = up[2];
- const centerx = center[0];
- const centery = center[1];
- const centerz = center[2];
- if (Math.abs(eyex - centerx) < EPSILON &&
- Math.abs(eyey - centery) < EPSILON &&
- Math.abs(eyez - centerz) < EPSILON
- ) {
- return setIdentity(out);
- }
- z0 = eyex - centerx;
- z1 = eyey - centery;
- z2 = eyez - centerz;
- len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
- z0 *= len;
- z1 *= len;
- z2 *= len;
- x0 = upy * z2 - upz * z1;
- x1 = upz * z0 - upx * z2;
- x2 = upx * z1 - upy * z0;
- len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
- if (!len) {
- x0 = 0;
- x1 = 0;
- x2 = 0;
- } else {
- len = 1 / len;
- x0 *= len;
- x1 *= len;
- x2 *= len;
- }
- y0 = z1 * x2 - z2 * x1;
- y1 = z2 * x0 - z0 * x2;
- y2 = z0 * x1 - z1 * x0;
- len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
- if (!len) {
- y0 = 0;
- y1 = 0;
- y2 = 0;
- } else {
- len = 1 / len;
- y0 *= len;
- y1 *= len;
- y2 *= len;
- }
- out[0] = x0;
- out[1] = y0;
- out[2] = z0;
- out[3] = 0;
- out[4] = x1;
- out[5] = y1;
- out[6] = z1;
- out[7] = 0;
- out[8] = x2;
- out[9] = y2;
- out[10] = z2;
- out[11] = 0;
- out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
- out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
- out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
- out[15] = 1;
- return out;
- }
- /**
- * Generates a matrix that makes something look at something else.
- */
- export function targetTo(out: Mat4, eye: Vec3, target: Vec3, up: Vec3) {
- const eyex = eye[0],
- eyey = eye[1],
- eyez = eye[2],
- upx = up[0],
- upy = up[1],
- upz = up[2];
- let z0 = eyex - target[0],
- z1 = eyey - target[1],
- z2 = eyez - target[2];
- let len = z0 * z0 + z1 * z1 + z2 * z2;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- z0 *= len;
- z1 *= len;
- z2 *= len;
- }
- let x0 = upy * z2 - upz * z1,
- x1 = upz * z0 - upx * z2,
- x2 = upx * z1 - upy * z0;
- len = x0 * x0 + x1 * x1 + x2 * x2;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- x0 *= len;
- x1 *= len;
- x2 *= len;
- }
- out[0] = x0;
- out[1] = x1;
- out[2] = x2;
- out[3] = 0;
- out[4] = z1 * x2 - z2 * x1;
- out[5] = z2 * x0 - z0 * x2;
- out[6] = z0 * x1 - z1 * x0;
- out[7] = 0;
- out[8] = z0;
- out[9] = z1;
- out[10] = z2;
- out[11] = 0;
- out[12] = eyex;
- out[13] = eyey;
- out[14] = eyez;
- out[15] = 1;
- return out;
- }
- /**
- * Perm is 0-indexed permutation
- */
- export function fromPermutation(out: Mat4, perm: number[]) {
- setZero(out);
- for (let i = 0; i < 4; i++) {
- const p = perm[i];
- setValue(out, i, p, 1);
- }
- return out;
- }
- export function getMaxScaleOnAxis(m: Mat4) {
- const scaleXSq = m[0] * m[0] + m[1] * m[1] + m[2] * m[2];
- const scaleYSq = m[4] * m[4] + m[5] * m[5] + m[6] * m[6];
- const scaleZSq = m[8] * m[8] + m[9] * m[9] + m[10] * m[10];
- return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));
- }
- const xAxis = [1, 0, 0] as unknown as Vec3;
- const yAxis = [0, 1, 0] as unknown as Vec3;
- const zAxis = [0, 0, 1] as unknown as Vec3;
- /** Rotation matrix for 90deg around x-axis */
- export const rotX90: ReadonlyMat4 = fromRotation(zero(), degToRad(90), xAxis);
- /** Rotation matrix for 180deg around x-axis */
- export const rotX180: ReadonlyMat4 = fromRotation(zero(), degToRad(180), xAxis);
- /** Rotation matrix for 90deg around y-axis */
- export const rotY90: ReadonlyMat4 = fromRotation(zero(), degToRad(90), yAxis);
- /** Rotation matrix for 180deg around y-axis */
- export const rotY180: ReadonlyMat4 = fromRotation(zero(), degToRad(180), yAxis);
- /** Rotation matrix for 270deg around y-axis */
- export const rotY270: ReadonlyMat4 = fromRotation(zero(), degToRad(270), yAxis);
- /** Rotation matrix for 90deg around z-axis */
- export const rotZ90: ReadonlyMat4 = fromRotation(zero(), degToRad(90), zAxis);
- /** Rotation matrix for 180deg around z-axis */
- export const rotZ180: ReadonlyMat4 = fromRotation(zero(), degToRad(180), zAxis);
- /** Rotation matrix for 90deg around first x-axis and then y-axis */
- export const rotXY90: ReadonlyMat4 = mul(zero(), rotX90, rotY90);
- /** Rotation matrix for 90deg around first z-axis and then y-axis */
- export const rotZY90: ReadonlyMat4 = mul(zero(), rotZ90, rotY90);
- /** Rotation matrix for 90deg around first z-axis and then y-axis and then z-axis */
- export const rotZYZ90: ReadonlyMat4 = mul(zero(), rotZY90, rotZ90);
- /** Rotation matrix for 90deg around first z-axis and then 180deg around x-axis */
- export const rotZ90X180: ReadonlyMat4 = mul(zero(), rotZ90, rotX180);
- /** Rotation matrix for 90deg around first y-axis and then 180deg around z-axis */
- export const rotY90Z180: ReadonlyMat4 = mul(zero(), rotY90, rotZ180);
- /** Identity matrix */
- export const id: ReadonlyMat4 = identity();
- }
- export { Mat4 };
|