12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388 |
- /**
- * Copyright (c) 2017 mol* contributors, licensed under MIT, See LICENSE file for more info.
- *
- * @author David Sehnal <david.sehnal@gmail.com>
- * @author Alexander Rose <alexander.rose@weirdbyte.de>
- */
- /*
- * This code has been modified from https://github.com/toji/gl-matrix/,
- * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- */
- export interface Mat4 extends Array<number> { [d: number]: number, '@type': 'mat4', length: 16 }
- export interface Mat3 extends Array<number> { [d: number]: number, '@type': 'mat3', length: 9 }
- export interface Vec3 extends Array<number> { [d: number]: number, '@type': 'vec3', length: 3 }
- export interface Vec4 extends Array<number> { [d: number]: number, '@type': 'vec4', length: 4 }
- export interface Quat extends Array<number> { [d: number]: number, '@type': 'quat', length: 4 }
- const enum EPSILON { Value = 0.000001 }
- export function Mat4() {
- return Mat4.zero();
- }
- export function Quat() {
- return Quat.zero();
- }
- /**
- * Stores a 4x4 matrix in a column major (j * 4 + i indexing) format.
- */
- export namespace Mat4 {
- export function zero(): Mat4 {
- // force double backing array by 0.1.
- const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
- ret[0] = 0.0;
- return ret as any;
- }
- export function identity(): Mat4 {
- const out = zero();
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- export function setIdentity(mat: Mat4): Mat4 {
- mat[0] = 1;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = 1;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = 1;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- }
- export function ofRows(rows: number[][]): Mat4 {
- const out = zero();
- for (let i = 0; i < 4; i++) {
- const r = rows[i];
- for (let j = 0; j < 4; j++) {
- out[4 * j + i] = r[j];
- }
- }
- return out;
- }
- const _id = identity();
- export function isIdentity(m: Mat4, eps?: number) {
- return areEqual(m, _id, typeof eps === 'undefined' ? EPSILON.Value : eps);
- }
- export function areEqual(a: Mat4, b: Mat4, eps: number) {
- for (let i = 0; i < 16; i++) {
- if (Math.abs(a[i] - b[i]) > eps) return false;
- }
- return true;
- }
- export function setValue(a: Mat4, i: number, j: number, value: number) {
- a[4 * j + i] = value;
- }
- export function toArray(a: Mat4, out: Helpers.NumberArray, offset: number) {
- out[offset + 0] = a[0];
- out[offset + 1] = a[1];
- out[offset + 2] = a[2];
- out[offset + 3] = a[3];
- out[offset + 4] = a[4];
- out[offset + 5] = a[5];
- out[offset + 6] = a[6];
- out[offset + 7] = a[7];
- out[offset + 8] = a[8];
- out[offset + 9] = a[9];
- out[offset + 10] = a[10];
- out[offset + 11] = a[11];
- out[offset + 12] = a[12];
- out[offset + 13] = a[13];
- out[offset + 14] = a[14];
- out[offset + 15] = a[15];
- }
- export function fromArray(a: Mat4, array: Helpers.NumberArray, offset: number) {
- a[0] = array[offset + 0]
- a[1] = array[offset + 1]
- a[2] = array[offset + 2]
- a[3] = array[offset + 3]
- a[4] = array[offset + 4]
- a[5] = array[offset + 5]
- a[6] = array[offset + 6]
- a[7] = array[offset + 7]
- a[8] = array[offset + 8]
- a[9] = array[offset + 9]
- a[10] = array[offset + 10]
- a[11] = array[offset + 11]
- a[12] = array[offset + 12]
- a[13] = array[offset + 13]
- a[14] = array[offset + 14]
- a[15] = array[offset + 15]
- }
- export function copy(out: Mat4, a: Mat4) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- }
- export function clone(a: Mat4) {
- return Mat4.copy(Mat4.zero(), a);
- }
- export function transpose(out: Mat4, a: Mat4) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- const a01 = a[1], a02 = a[2], a03 = a[3];
- const a12 = a[6], a13 = a[7];
- const a23 = a[11];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a01;
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a02;
- out[9] = a12;
- out[11] = a[14];
- out[12] = a03;
- out[13] = a13;
- out[14] = a23;
- } else {
- out[0] = a[0];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a[1];
- out[5] = a[5];
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a[2];
- out[9] = a[6];
- out[10] = a[10];
- out[11] = a[14];
- out[12] = a[3];
- out[13] = a[7];
- out[14] = a[11];
- out[15] = a[15];
- }
- return out;
- }
- export function invert(out: Mat4, a: Mat4) {
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- if (!det) {
- console.warn('non-invertible matrix.', a);
- return out;
- }
- det = 1.0 / det;
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
- out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
- out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
- out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
- out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
- out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
- out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
- return out;
- }
- export function mul(out: Mat4, a: Mat4, b: Mat4) {
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- // Cache only the current line of the second matrix
- let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
- out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
- out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
- out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
- out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
- out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
- out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
- return out;
- }
- export function mul3(out: Mat4, a: Mat4, b: Mat4, c: Mat4) {
- return mul(out, mul(out, a, b), c);
- }
- export function translate(out: Mat4, a: Mat4, v: Vec3) {
- const x = v[0], y = v[1], z = v[2];
- let a00: number, a01: number, a02: number, a03: number,
- a10: number, a11: number, a12: number, a13: number,
- a20: number, a21: number, a22: number, a23: number;
- if (a === out) {
- out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
- out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
- out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
- out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
- } else {
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
- out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
- out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
- out[12] = a00 * x + a10 * y + a20 * z + a[12];
- out[13] = a01 * x + a11 * y + a21 * z + a[13];
- out[14] = a02 * x + a12 * y + a22 * z + a[14];
- out[15] = a03 * x + a13 * y + a23 * z + a[15];
- }
- return out;
- }
- export function fromTranslation(out: Mat4, v: Vec3) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- }
- export function setTranslation(out: Mat4, v: Vec3) {
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- return out;
- }
- export function rotate(out: Mat4, a: Mat4, rad: number, axis: Mat4) {
- let x = axis[0], y = axis[1], z = axis[2],
- len = Math.sqrt(x * x + y * y + z * z),
- s, c, t,
- a00, a01, a02, a03,
- a10, a11, a12, a13,
- a20, a21, a22, a23,
- b00, b01, b02,
- b10, b11, b12,
- b20, b21, b22;
- if (Math.abs(len) < EPSILON.Value) {
- return Mat4.identity();
- }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- s = Math.sin(rad);
- c = Math.cos(rad);
- t = 1 - c;
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- // Construct the elements of the rotation matrix
- b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
- b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
- b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
- // Perform rotation-specific matrix multiplication
- out[0] = a00 * b00 + a10 * b01 + a20 * b02;
- out[1] = a01 * b00 + a11 * b01 + a21 * b02;
- out[2] = a02 * b00 + a12 * b01 + a22 * b02;
- out[3] = a03 * b00 + a13 * b01 + a23 * b02;
- out[4] = a00 * b10 + a10 * b11 + a20 * b12;
- out[5] = a01 * b10 + a11 * b11 + a21 * b12;
- out[6] = a02 * b10 + a12 * b11 + a22 * b12;
- out[7] = a03 * b10 + a13 * b11 + a23 * b12;
- out[8] = a00 * b20 + a10 * b21 + a20 * b22;
- out[9] = a01 * b20 + a11 * b21 + a21 * b22;
- out[10] = a02 * b20 + a12 * b21 + a22 * b22;
- out[11] = a03 * b20 + a13 * b21 + a23 * b22;
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- return out;
- }
- export function fromRotation(out: Mat4, rad: number, axis: Vec3) {
- let x = axis[0], y = axis[1], z = axis[2],
- len = Math.sqrt(x * x + y * y + z * z),
- s, c, t;
- if (Math.abs(len) < EPSILON.Value) { return setIdentity(out); }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- s = Math.sin(rad);
- c = Math.cos(rad);
- t = 1 - c;
- // Perform rotation-specific matrix multiplication
- out[0] = x * x * t + c;
- out[1] = y * x * t + z * s;
- out[2] = z * x * t - y * s;
- out[3] = 0;
- out[4] = x * y * t - z * s;
- out[5] = y * y * t + c;
- out[6] = z * y * t + x * s;
- out[7] = 0;
- out[8] = x * z * t + y * s;
- out[9] = y * z * t - x * s;
- out[10] = z * z * t + c;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- export function scale(out: Mat4, a: Mat4, v: Vec3) {
- const x = v[0], y = v[1], z = v[2];
- out[0] = a[0] * x;
- out[1] = a[1] * x;
- out[2] = a[2] * x;
- out[3] = a[3] * x;
- out[4] = a[4] * y;
- out[5] = a[5] * y;
- out[6] = a[6] * y;
- out[7] = a[7] * y;
- out[8] = a[8] * z;
- out[9] = a[9] * z;
- out[10] = a[10] * z;
- out[11] = a[11] * z;
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- }
- export function fromScaling(out: Mat4, v: Vec3) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = v[1];
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = v[2];
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- export function makeTable(m: Mat4) {
- let ret = '';
- for (let i = 0; i < 4; i++) {
- for (let j = 0; j < 4; j++) {
- ret += m[4 * j + i].toString();
- if (j < 3) ret += ' ';
- }
- if (i < 3) ret += '\n';
- }
- return ret;
- }
- export function determinant(a: Mat4) {
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- }
- /**
- * Check if the matrix has the form
- * [ Rotation Translation ]
- * [ 0 1 ]
- */
- export function isRotationAndTranslation(a: Mat4, eps?: number) {
- return _isRotationAndTranslation(a, typeof eps !== 'undefined' ? eps : EPSILON.Value)
- }
- function _isRotationAndTranslation(a: Mat4, eps: number) {
- const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- /* a30 = a[12], a31 = a[13], a32 = a[14],*/ a33 = a[15];
- if (a33 !== 1 || a03 !== 0 || a13 !== 0 || a23 !== 0) {
- return false;
- }
- const det3x3 = a00 * (a11 * a22 - a12 * a21) - a01 * (a10 * a22 - a12 * a20) + a02 * (a10 * a21 - a11 * a20);
- if (det3x3 < 1 - eps || det3x3 > 1 + eps) {
- return false;
- }
- return true;
- }
- export function fromQuat(out: Mat4, q: Quat) {
- const x = q[0], y = q[1], z = q[2], w = q[3];
- const x2 = x + x;
- const y2 = y + y;
- const z2 = z + z;
- const xx = x * x2;
- const yx = y * x2;
- const yy = y * y2;
- const zx = z * x2;
- const zy = z * y2;
- const zz = z * z2;
- const wx = w * x2;
- const wy = w * y2;
- const wz = w * z2;
- out[0] = 1 - yy - zz;
- out[1] = yx + wz;
- out[2] = zx - wy;
- out[3] = 0;
- out[4] = yx - wz;
- out[5] = 1 - xx - zz;
- out[6] = zy + wx;
- out[7] = 0;
- out[8] = zx + wy;
- out[9] = zy - wx;
- out[10] = 1 - xx - yy;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Generates a frustum matrix with the given bounds
- */
- export function frustum(out: Mat4, left: number, right: number, bottom: number, top: number, near: number, far: number) {
- let rl = 1 / (right - left);
- let tb = 1 / (top - bottom);
- let nf = 1 / (near - far);
- out[0] = (near * 2) * rl;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = (near * 2) * tb;
- out[6] = 0;
- out[7] = 0;
- out[8] = (right + left) * rl;
- out[9] = (top + bottom) * tb;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (far * near * 2) * nf;
- out[15] = 0;
- return out;
- }
- /**
- * Generates a perspective projection matrix with the given bounds
- */
- export function perspective(out: Mat4, fovy: number, aspect: number, near: number, far: number) {
- let f = 1.0 / Math.tan(fovy / 2);
- let nf = 1 / (near - far);
- out[0] = f / aspect;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = f;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (2 * far * near) * nf;
- out[15] = 0;
- return out;
- }
- /**
- * Generates a orthogonal projection matrix with the given bounds
- */
- export function ortho(out: Mat4, left: number, right: number, bottom: number, top: number, near: number, far: number) {
- let lr = 1 / (left - right);
- let bt = 1 / (bottom - top);
- let nf = 1 / (near - far);
- out[0] = -2 * lr;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = -2 * bt;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 2 * nf;
- out[11] = 0;
- out[12] = (left + right) * lr;
- out[13] = (top + bottom) * bt;
- out[14] = (far + near) * nf;
- out[15] = 1;
- return out;
- }
- /**
- * Generates a look-at matrix with the given eye position, focal point, and up axis
- */
- export function lookAt(out: Mat4, eye: Vec3, center: Vec3, up: Vec3) {
- let x0, x1, x2, y0, y1, y2, z0, z1, z2, len;
- let eyex = eye[0];
- let eyey = eye[1];
- let eyez = eye[2];
- let upx = up[0];
- let upy = up[1];
- let upz = up[2];
- let centerx = center[0];
- let centery = center[1];
- let centerz = center[2];
- if (Math.abs(eyex - centerx) < EPSILON.Value &&
- Math.abs(eyey - centery) < EPSILON.Value &&
- Math.abs(eyez - centerz) < EPSILON.Value
- ) {
- return setIdentity(out);
- }
- z0 = eyex - centerx;
- z1 = eyey - centery;
- z2 = eyez - centerz;
- len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
- z0 *= len;
- z1 *= len;
- z2 *= len;
- x0 = upy * z2 - upz * z1;
- x1 = upz * z0 - upx * z2;
- x2 = upx * z1 - upy * z0;
- len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
- if (!len) {
- x0 = 0;
- x1 = 0;
- x2 = 0;
- } else {
- len = 1 / len;
- x0 *= len;
- x1 *= len;
- x2 *= len;
- }
- y0 = z1 * x2 - z2 * x1;
- y1 = z2 * x0 - z0 * x2;
- y2 = z0 * x1 - z1 * x0;
- len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
- if (!len) {
- y0 = 0;
- y1 = 0;
- y2 = 0;
- } else {
- len = 1 / len;
- y0 *= len;
- y1 *= len;
- y2 *= len;
- }
- out[0] = x0;
- out[1] = y0;
- out[2] = z0;
- out[3] = 0;
- out[4] = x1;
- out[5] = y1;
- out[6] = z1;
- out[7] = 0;
- out[8] = x2;
- out[9] = y2;
- out[10] = z2;
- out[11] = 0;
- out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
- out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
- out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
- out[15] = 1;
- return out;
- }
- }
- export namespace Mat3 {
- export function zero(): Mat3 {
- // force double backing array by 0.1.
- const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0];
- ret[0] = 0.0;
- return ret as any;
- }
- }
- export namespace Vec3 {
- export function zero(): Vec3 {
- const out = [0.1, 0.0, 0.0];
- out[0] = 0;
- return out as any;
- }
- export function clone(a: Vec3): Vec3 {
- const out = zero();
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- }
- export function fromObj(v: { x: number, y: number, z: number }): Vec3 {
- return create(v.x, v.y, v.z);
- }
- export function toObj(v: Vec3) {
- return { x: v[0], y: v[1], z: v[2] };
- }
- export function fromArray(v: Vec3, array: Helpers.NumberArray, offset: number) {
- v[0] = array[offset + 0]
- v[1] = array[offset + 1]
- v[2] = array[offset + 2]
- }
- export function toArray(v: Vec3, out: Helpers.NumberArray, offset: number) {
- out[offset + 0] = v[0]
- out[offset + 1] = v[1]
- out[offset + 2] = v[2]
- }
- export function create(x: number, y: number, z: number): Vec3 {
- const out = zero();
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- }
- export function set(out: Vec3, x: number, y: number, z: number): Vec3 {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- }
- export function copy(out: Vec3, a: Vec3) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- }
- export function add(out: Vec3, a: Vec3, b: Vec3) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- return out;
- }
- export function sub(out: Vec3, a: Vec3, b: Vec3) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- return out;
- }
- export function scale(out: Vec3, a: Vec3, b: number) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- return out;
- }
- export function scaleAndAdd(out: Vec3, a: Vec3, b: Vec3, scale: number) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- return out;
- }
- export function distance(a: Vec3, b: Vec3) {
- const x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return Math.sqrt(x * x + y * y + z * z);
- }
- export function squaredDistance(a: Vec3, b: Vec3) {
- const x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return x * x + y * y + z * z;
- }
- export function magnitude(a: Vec3) {
- const x = a[0],
- y = a[1],
- z = a[2];
- return Math.sqrt(x * x + y * y + z * z);
- }
- export function squaredMagnitude(a: Vec3) {
- const x = a[0],
- y = a[1],
- z = a[2];
- return x * x + y * y + z * z;
- }
- export function normalize(out: Vec3, a: Vec3) {
- const x = a[0],
- y = a[1],
- z = a[2];
- let len = x * x + y * y + z * z;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- out[2] = a[2] * len;
- }
- return out;
- }
- export function dot(a: Vec3, b: Vec3) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
- }
- export function cross(out: Vec3, a: Vec3, b: Vec3) {
- const ax = a[0], ay = a[1], az = a[2],
- bx = b[0], by = b[1], bz = b[2];
- out[0] = ay * bz - az * by;
- out[1] = az * bx - ax * bz;
- out[2] = ax * by - ay * bx;
- return out;
- }
- export function lerp(out: Vec3, a: Vec3, b: Vec3, t: number) {
- const ax = a[0],
- ay = a[1],
- az = a[2];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- return out;
- }
- export function transformMat4(out: Vec3, a: Vec3, m: Mat4) {
- const x = a[0], y = a[1], z = a[2],
- w = (m[3] * x + m[7] * y + m[11] * z + m[15]) || 1.0;
- out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
- out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
- out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
- return out;
- }
- const angleTempA = zero(), angleTempB = zero();
- export function angle(a: Vec3, b: Vec3) {
- copy(angleTempA, a);
- copy(angleTempB, b);
- normalize(angleTempA, angleTempA);
- normalize(angleTempB, angleTempB);
- const cosine = dot(angleTempA, angleTempB);
- if (cosine > 1.0) {
- return 0;
- }
- else if (cosine < -1.0) {
- return Math.PI;
- } else {
- return Math.acos(cosine);
- }
- }
- const rotTemp = zero();
- export function makeRotation(mat: Mat4, a: Vec3, b: Vec3): Mat4 {
- const by = angle(a, b);
- if (Math.abs(by) < 0.0001) return Mat4.setIdentity(mat);
- const axis = cross(rotTemp, a, b);
- return Mat4.fromRotation(mat, by, axis);
- }
- }
- export namespace Vec4 {
- export function zero(): Vec4 {
- // force double backing array by 0.1.
- const ret = [0.1, 0, 0, 0];
- ret[0] = 0.0;
- return ret as any;
- }
- export function clone(a: Vec4) {
- const out = zero();
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- }
- export function create(x: number, y: number, z: number, w: number) {
- const out = zero();
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- }
- export function copy(out: Vec4, a: Vec4) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- }
- export function set(out: Vec4, x: number, y: number, z: number, w: number) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- }
- export function add(out: Quat, a: Quat, b: Quat) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- return out;
- }
- export function distance(a: Vec4, b: Vec4) {
- const x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2],
- w = b[3] - a[3];
- return Math.sqrt(x * x + y * y + z * z + w * w);
- }
- export function squaredDistance(a: Vec4, b: Vec4) {
- const x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2],
- w = b[3] - a[3];
- return x * x + y * y + z * z + w * w;
- }
- export function norm(a: Vec4) {
- const x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- return Math.sqrt(x * x + y * y + z * z + w * w);
- }
- export function squaredNorm(a: Vec4) {
- const x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- return x * x + y * y + z * z + w * w;
- }
- export function transform(out: Vec4, a: Vec4, m: Mat4) {
- const x = a[0], y = a[1], z = a[2], w = a[3];
- out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
- out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
- out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
- out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
- return out;
- }
- }
- export namespace Quat {
- export function zero(): Quat {
- // force double backing array by 0.1.
- const ret = [0.1, 0, 0, 0];
- ret[0] = 0.0;
- return ret as any;
- }
- export function identity(): Quat {
- const out = zero();
- out[3] = 1;
- return out;
- }
- export function create(x: number, y: number, z: number, w: number) {
- const out = identity();
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- }
- export function setAxisAngle(out: Quat, axis: Vec3, rad: number) {
- rad = rad * 0.5;
- let s = Math.sin(rad);
- out[0] = s * axis[0];
- out[1] = s * axis[1];
- out[2] = s * axis[2];
- out[3] = Math.cos(rad);
- return out;
- }
- /**
- * Gets the rotation axis and angle for a given
- * quaternion. If a quaternion is created with
- * setAxisAngle, this method will return the same
- * values as providied in the original parameter list
- * OR functionally equivalent values.
- * Example: The quaternion formed by axis [0, 0, 1] and
- * angle -90 is the same as the quaternion formed by
- * [0, 0, 1] and 270. This method favors the latter.
- */
- export function getAxisAngle(out_axis: Vec3, q: Quat) {
- let rad = Math.acos(q[3]) * 2.0;
- let s = Math.sin(rad / 2.0);
- if (s !== 0.0) {
- out_axis[0] = q[0] / s;
- out_axis[1] = q[1] / s;
- out_axis[2] = q[2] / s;
- } else {
- // If s is zero, return any axis (no rotation - axis does not matter)
- out_axis[0] = 1;
- out_axis[1] = 0;
- out_axis[2] = 0;
- }
- return rad;
- }
- export function multiply(out: Quat, a: Quat, b: Quat) {
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bx = b[0], by = b[1], bz = b[2], bw = b[3];
- out[0] = ax * bw + aw * bx + ay * bz - az * by;
- out[1] = ay * bw + aw * by + az * bx - ax * bz;
- out[2] = az * bw + aw * bz + ax * by - ay * bx;
- out[3] = aw * bw - ax * bx - ay * by - az * bz;
- return out;
- }
- export function rotateX(out: Quat, a: Quat, rad: number) {
- rad *= 0.5;
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bx = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + aw * bx;
- out[1] = ay * bw + az * bx;
- out[2] = az * bw - ay * bx;
- out[3] = aw * bw - ax * bx;
- return out;
- }
- export function rotateY(out: Quat, a: Quat, rad: number) {
- rad *= 0.5;
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let by = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw - az * by;
- out[1] = ay * bw + aw * by;
- out[2] = az * bw + ax * by;
- out[3] = aw * bw - ay * by;
- return out;
- }
- export function rotateZ(out: Quat, a: Quat, rad: number) {
- rad *= 0.5;
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bz = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + ay * bz;
- out[1] = ay * bw - ax * bz;
- out[2] = az * bw + aw * bz;
- out[3] = aw * bw - az * bz;
- return out;
- }
- /**
- * Calculates the W component of a quat from the X, Y, and Z components.
- * Assumes that quaternion is 1 unit in length.
- * Any existing W component will be ignored.
- */
- export function calculateW(out: Quat, a: Quat) {
- let x = a[0], y = a[1], z = a[2];
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
- return out;
- }
- /**
- * Performs a spherical linear interpolation between two quat
- */
- export function slerp(out: Quat, a: Quat, b: Quat, t: number) {
- // benchmarks:
- // http://jsperf.com/quaternion-slerp-implementations
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bx = b[0], by = b[1], bz = b[2], bw = b[3];
- let omega, cosom, sinom, scale0, scale1;
- // calc cosine
- cosom = ax * bx + ay * by + az * bz + aw * bw;
- // adjust signs (if necessary)
- if ( cosom < 0.0 ) {
- cosom = -cosom;
- bx = - bx;
- by = - by;
- bz = - bz;
- bw = - bw;
- }
- // calculate coefficients
- if ( (1.0 - cosom) > 0.000001 ) {
- // standard case (slerp)
- omega = Math.acos(cosom);
- sinom = Math.sin(omega);
- scale0 = Math.sin((1.0 - t) * omega) / sinom;
- scale1 = Math.sin(t * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - t;
- scale1 = t;
- }
- // calculate final values
- out[0] = scale0 * ax + scale1 * bx;
- out[1] = scale0 * ay + scale1 * by;
- out[2] = scale0 * az + scale1 * bz;
- out[3] = scale0 * aw + scale1 * bw;
- return out;
- }
- export function invert(out: Quat, a: Quat) {
- let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
- let dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
- let invDot = dot ? 1.0/dot : 0;
- // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
- out[0] = -a0 * invDot;
- out[1] = -a1 * invDot;
- out[2] = -a2 * invDot;
- out[3] = a3 * invDot;
- return out;
- }
- /**
- * Calculates the conjugate of a quat
- * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
- */
- export function conjugate(out: Quat, a: Quat) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a[3];
- return out;
- }
- /**
- * Creates a quaternion from the given 3x3 rotation matrix.
- *
- * NOTE: The resultant quaternion is not normalized, so you should be sure
- * to renormalize the quaternion yourself where necessary.
- */
- export function fromMat3(out: Quat, m: Mat3) {
- // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
- // article "Quaternion Calculus and Fast Animation".
- const fTrace = m[0] + m[4] + m[8];
- let fRoot;
- if ( fTrace > 0.0 ) {
- // |w| > 1/2, may as well choose w > 1/2
- fRoot = Math.sqrt(fTrace + 1.0); // 2w
- out[3] = 0.5 * fRoot;
- fRoot = 0.5/fRoot; // 1/(4w)
- out[0] = (m[5]-m[7])*fRoot;
- out[1] = (m[6]-m[2])*fRoot;
- out[2] = (m[1]-m[3])*fRoot;
- } else {
- // |w| <= 1/2
- let i = 0;
- if ( m[4] > m[0] ) i = 1;
- if ( m[8] > m[i*3+i] ) i = 2;
- let j = (i+1)%3;
- let k = (i+2)%3;
- fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
- out[i] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot;
- out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;
- out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
- out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
- }
- return out;
- }
- export function clone(a: Quat) {
- const out = zero();
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- }
- export function copy(out: Quat, a: Quat) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- }
- export function set(out: Quat, x: number, y: number, z: number, w: number) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- }
- export function add(out: Quat, a: Quat, b: Quat) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- return out;
- }
- export function normalize(out: Quat, a: Quat) {
- let x = a[0];
- let y = a[1];
- let z = a[2];
- let w = a[3];
- let len = x*x + y*y + z*z + w*w;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- out[0] = x * len;
- out[1] = y * len;
- out[2] = z * len;
- out[3] = w * len;
- }
- return out;
- }
- /**
- * Sets a quaternion to represent the shortest rotation from one
- * vector to another.
- *
- * Both vectors are assumed to be unit length.
- */
- const rotTmpVec3 = Vec3.zero();
- const rotTmpVec3UnitX = Vec3.create(1, 0, 0);
- const rotTmpVec3UnitY = Vec3.create(0, 1, 0);
- export function rotationTo(out: Quat, a: Vec3, b: Vec3) {
- let dot = Vec3.dot(a, b);
- if (dot < -0.999999) {
- Vec3.cross(rotTmpVec3, rotTmpVec3UnitX, a);
- if (Vec3.magnitude(rotTmpVec3) < 0.000001)
- Vec3.cross(rotTmpVec3, rotTmpVec3UnitY, a);
- Vec3.normalize(rotTmpVec3, rotTmpVec3);
- setAxisAngle(out, rotTmpVec3, Math.PI);
- return out;
- } else if (dot > 0.999999) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- } else {
- Vec3.cross(rotTmpVec3, a, b);
- out[0] = rotTmpVec3[0];
- out[1] = rotTmpVec3[1];
- out[2] = rotTmpVec3[2];
- out[3] = 1 + dot;
- return normalize(out, out);
- }
- }
- /**
- * Performs a spherical linear interpolation with two control points
- */
- let sqlerpTemp1 = Quat.zero();
- let sqlerpTemp2 = Quat.zero();
- export function sqlerp(out: Quat, a: Quat, b: Quat, c: Quat, d: Quat, t: number) {
- slerp(sqlerpTemp1, a, d, t);
- slerp(sqlerpTemp2, b, c, t);
- slerp(out, sqlerpTemp1, sqlerpTemp2, 2 * t * (1 - t));
- return out;
- }
- /**
- * Sets the specified quaternion with values corresponding to the given
- * axes. Each axis is a vec3 and is expected to be unit length and
- * perpendicular to all other specified axes.
- */
- const axesTmpMat = Mat3.zero();
- export function setAxes(out: Quat, view: Vec3, right: Vec3, up: Vec3) {
- axesTmpMat[0] = right[0];
- axesTmpMat[3] = right[1];
- axesTmpMat[6] = right[2];
- axesTmpMat[1] = up[0];
- axesTmpMat[4] = up[1];
- axesTmpMat[7] = up[2];
- axesTmpMat[2] = -view[0];
- axesTmpMat[5] = -view[1];
- axesTmpMat[8] = -view[2];
- return normalize(out, Quat.fromMat3(out, axesTmpMat));
- }
- }
|