The concentration range (mg/mL) of the complex in the sample used in the solution scattering experiment to determine the mean radius of structural elongation.
Examples: 0.7 - 14
A list of the software used in the data analysis
Examples: SCTPL5 GNOM
A list of the software used in the data reduction
Examples: OTOKO
The particular radiation detector. In general this will be a manufacturer, description, model number or some combination of these.
The general class of the radiation detector.
The value of _pdbx_soln_scatter.id must uniquely identify the sample in the category PDBX_SOLN_SCATTER
The maximum mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0).
lnl(Q) = lnl(0) - R_G^2Q^2/3
where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength
The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard.
see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460.
If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2
The estimated standard deviation for the minimum mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0).
lnl(Q) = lnl(0) - R_G^2Q^2/3
where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength
The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard.
see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460.
If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2
The mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q gives the R_G and the forward scattering at zero angle I(0).
lnl(Q) = lnl(0) - R_G^2Q^2/3
where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength
The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard.
see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173.
G.D.Wignall & F.S.Bates, (1987). The small-angle approximation
of X-ray and neutron scatter from rigid rods of non-uniform
cross section and finite length. J.Appl. Crystallog., 18, 452-460.
If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from
ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2
The estimated standard deviation for the mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0).
lnl(Q) = lnl(0) - R_G^2Q^2/3
where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength
The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard.
see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460.
If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2
The minimum mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0).
lnl(Q) = lnl(0) - R_G^2Q^2/3
where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength
The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard.
see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460.
If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2
The estimated standard deviation for the minimum mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0).
lnl(Q) = lnl(0) - R_G^2Q^2/3
where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength
The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard.
see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460.
If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from
ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2
The number of time frame solution scattering images used.
The length (or range) of the protein sample under study. If the solution structure is approximated as an elongated elliptical cyclinder the length L is determined from,
L = sqrt [12( (R_G)^2 - (R_XS)^2 ) ]
The length should also be given by
L = pi I(0) / [ I(Q).Q]_Q->0
The pH value of the buffered sample.
The beamline name used for the experiment
The instrumentation used on the beamline
The general class of the radiation source.
Examples: neutron source, synchrotron
The make, model, name or beamline of the source of radiation.
The temperature in kelvins at which the experiment was conducted
The type of solution scattering experiment carried out
Allowable values: modelling, neutron, x-ray
Generated using TypeDoc
The name of the buffer used for the sample in the solution scattering experiment.
Examples: acetic acid